

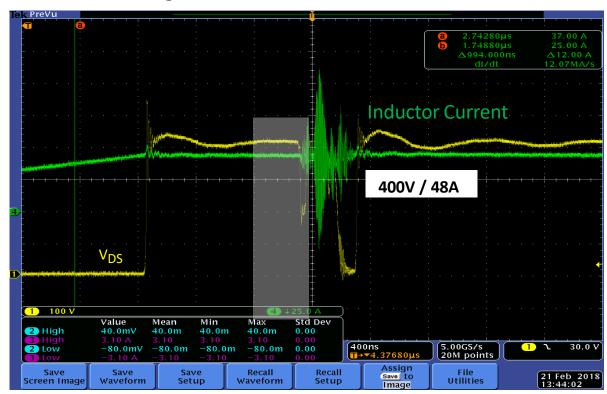
AN-009 HiRel Power Application Brief

PCB Layout Considerations with GaN E-HEMTs

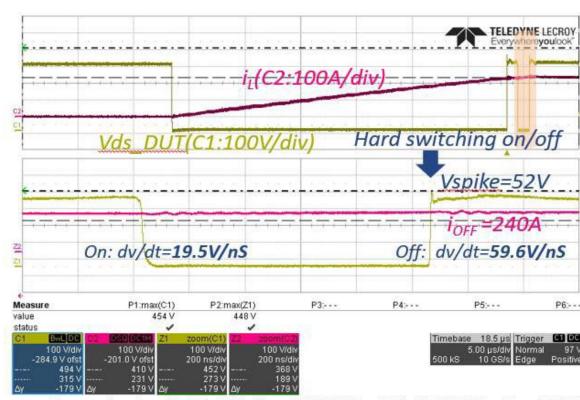
October 23, 2020

Overview

- This guide provides an overview of the good engineering practice for PCB layout of designs using GaN Systems' embedded GaNPX® packaged E-HEMTs.
- Layout guidelines are introduced for the following four circuit configurations
 - 1) Isolated gate driver circuit for single GaN E-HEMTs
 - 2) Isolated gate driver circuit for paralleled GaN E-HEMTs
 - 3) Half-bridge Booststrap gate driver circuit
 - 4) EZDriveSM circuit
- With optimum board layout combined with low GaNPX® package inductance, GaN E-HEMTs exhibit optimum switching performance


Introduction

- GaN Systems' E-HEMTs have very low packaging inductance, while enabling ultra-low inductance PCB power loops.
- Good engineering practice of layout techniques are required to minimize parasitic inductance and fully utilize the benefit of GaN Systems' E-HEMTs.
- This application note shows key steps to design an optimal PCB layout with GaN to maximize converter performance.



Motivation

- GaN E-HEMTs switch much faster than Si MOSFETs, and require proper engineering consideration of PCB layout design to minimize parasitic inductances.
- Parasitic inductances can cause higher overshoot voltages, ringing/oscillation, EMC issues, which can lead to overstressing the E-HEMTs.

Example of an unsuccessful design caused by unbalanced quasi-common source inductance

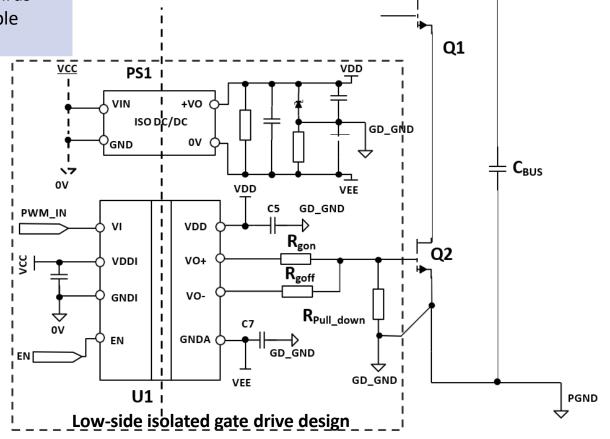
Measurement Setup: Lecroy WaveSurfer 10M Oscilloscope, HVD3106 Differential Probe(C1), CWT-3LFB mini Rogowski Coil(C2)

Example of clean switching waveforms when good PCB layout practices are used (400 V/240 A DPT)

PCB Layout Steps

- Step 1: Prepare the schematics and identify the components of each critical loop
 - Isolated gate driver circuit for single GaN HEMTs
 - Isolated gate driver circuit for paralleled GaN HEMTs
 - Half-bridge Bootstrap gate driver circuit
 - EZDriveSM circuit
- Step 2: Place the components according to the design priority and current direction
 - Put components as close as possible
 - According to the current direction, set the component in sequence
 - If there is a conflict for minimizing all the loops, refer to the priority listed on slides 7/8/9/10.
- Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

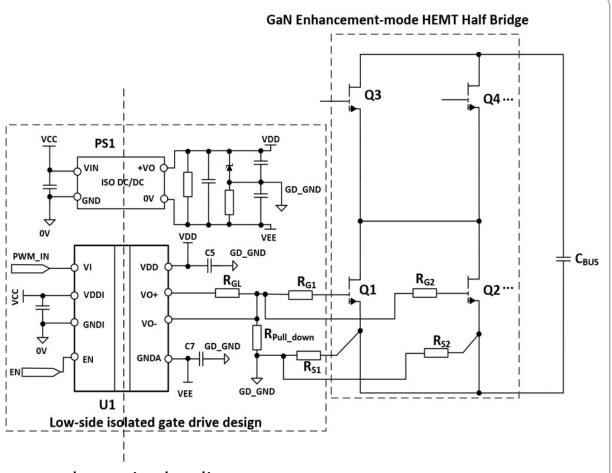
PCB Layout Steps


- Step 1: Prepare the schematics and identify the components of each critical loop
 - Isolated gate driver circuit for single GaN HEMTs
 - Isolated gate driver circuit for paralleled GaN HEMTs
 - Half-bridge Bootstrap gate driver circuit
 - EZDriveSM circuit
- Step 2: Place the components according to the design priority and current direction
 - Put components as close as possible
 - According to the current direction, set the component in sequence
 - If there is a conflict for minimizing all the loops, refer to the priority listed on slides 7/8/9/10.
- Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

Isolated gate driver circuit for single GaN HEMT

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	
2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as
2b	LS Gate Driver loop (turn-off)	C7,U1,R _{goff} ,Q2	possible

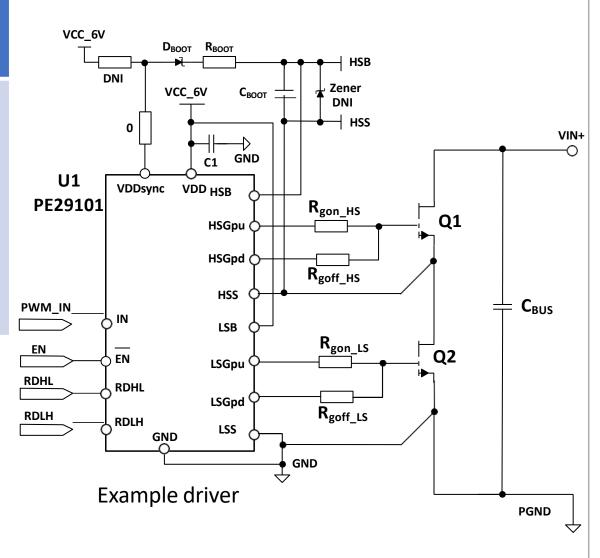
- High-side isolated gate drive design is symmetric as Low-side, not shown in the diagram
- Priority of HS gate driver loop is same as LS



GaN Enhancement-mode HEMT Half Bridge

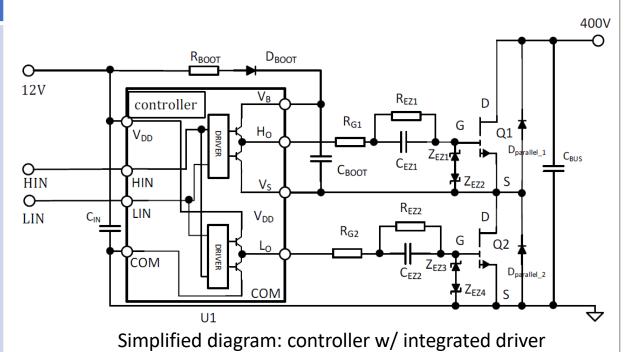
Isolated gate driver circuit for paralleled GaN HEMTs

Priority	Critical Loops	Components	Critical Loops Design Rule
1 a	Quasi-common source loop (high-side)	Q3, Q4	
1b	Quasi-common source loop (low-side)	Q1, Q2	As small and
2	Power Commutation loop	C _{BUS} , Q3/Q4, Q1/Q2	symmetric for each of paralleled devices as possible
3a	LS Gate Driver loop (turn-on)	C5, U1, RGL, R _{G1} /Q1/R _{S1} , R _{G2} /Q2/R _{S2}	
3b	LS Gate Driver loop (turn-off)	C7, U1, R _{G1} /Q1/R _{S1} , R _{G2} /Q2/R _{S2}	


- High-side isolated gate drive design is symmetric as Low-side, not shown in the diagram
- Priority of HS gate driver loop is same as LS
- Distributed gate and source resistance R_{G1}/R_{G2} and R_{S1}/R_{S2} needs to be separated

Half-bridge Bootstrap Gate Driver Circuit (Non-isolated)

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1, Q2, C _{BUS}	
2a	HS Gate Driver Loop (turn-on)	D_{BOOT} , R_{BOOT} , C_{BOOT} , U1, R_{gon_HS} , Q1	
2b	HS Gate Driver Loop (turn-off)	Q1, R _{goff_HS} , U1	As small as
2c	LS Gate Driver Loop (turn-on)	C1, U1, R _{gon_LS} , Q2	possible
2d	LS Gate Driver Loop (turn-off)	Q2, R _{goff_LS} , U1	


Use above table to identify critical loop, components and priority

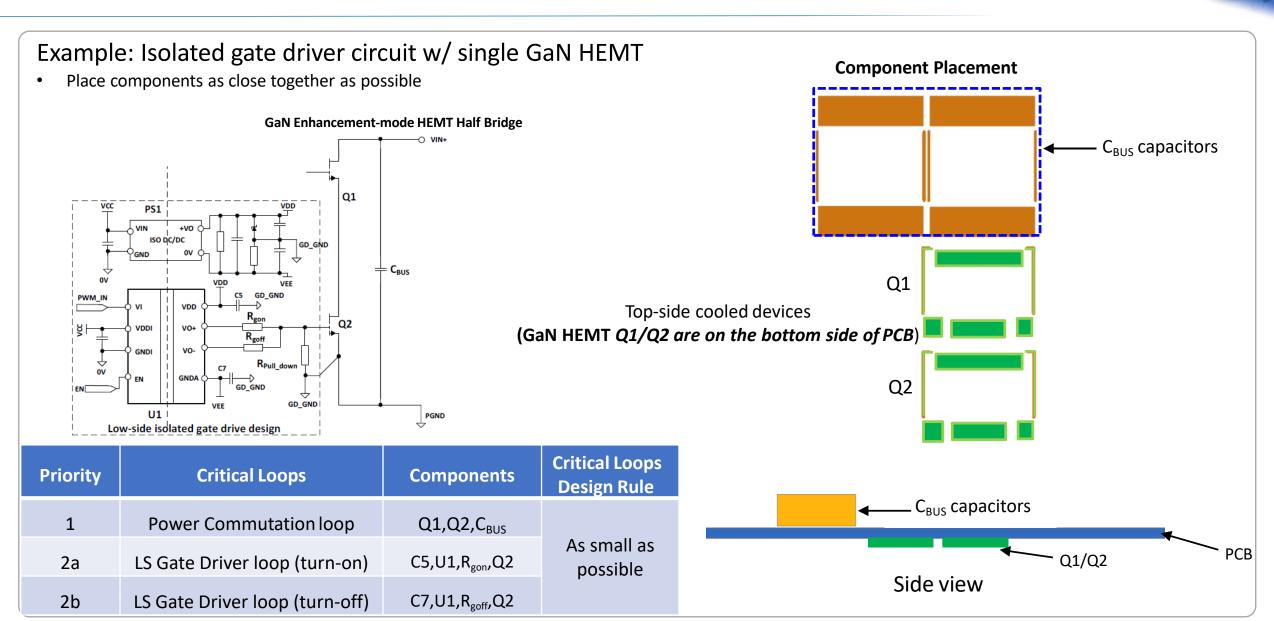
EZDriveSM circuit (Non-isolated half-bridge)

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation Loop	Q1, Q2, C _{BUS}	
2 a	HS Gate Driver Loop (turn-on)	R_{BOOT} , D_{BOOT} , C_{BOOT} , $U1$, R_{G1} , R_{EZ1} , C_{EZ1} , Z_{EZ1} , Z_{EZ2} , $Q1$	
2b	HS Gate Driver Loop (turn-off)	Q1, Z_{EZ1} , Z_{EZ2} , R_{EZ1} , C_{EZ1} , R_{G1} , U1	As small as possible
2c	LS Gate Driver Loop (turn-on)	U1, R_{G2} , R_{EZ2} , C_{EZ2} , Z_{EZ3} , Z_{EZ4} , Q2	
2d	LS Gate Driver Loop (turn-off)	Q2, Z_{EZ3} , Z_{EZ4} , R_{EZ2} , C_{EZ2} , R_{G2} , U1	

Use above table to identify critical loop, components and priority

Note: more details about EZDriveSM is available from the link:

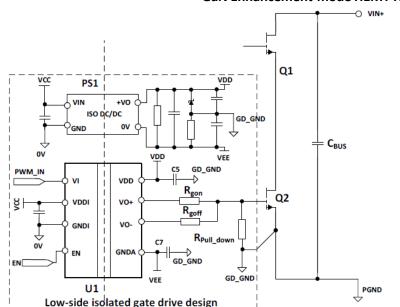
https://gansystems.com/wp-content/uploads/2018/12/GN010-EZDrive-Solution-for-GaN-Systems-E-HEMTs- 20181221.pdf


October 2020

PCB Layout Steps

- Step 1: Prepare the schematics and identify the components of each critical loop
 - Isolated gate driver circuit for single GaN HEMTs
 - Isolated gate driver circuit for paralleled GaN HEMTs
 - Half-bridge Bootstrap gate driver circuit
 - EZDriveSM circuit
- Step 2: Place the components according to the design priority and current direction
 - Put components as close as possible
 - According to the current direction, set the component in sequence
 - If there is a conflict for minimizing all the loops, refer to the priority listed on slides 7/8/9/10.
- Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

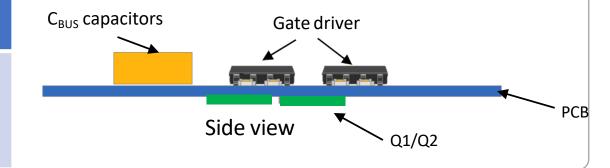
Step 2.1: Power commutation loops (Top-side cooling)



Step 2.2: Gate Driver Circuit Loop (Top-side cooling)

Example: Isolated gate driver circuit w/ single GaN HEMT

- Locate drivers close to the gate
- Use/create kelvin source for driver return



Top-side cooled devices

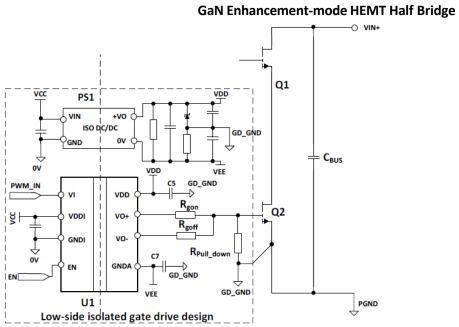
(GaN HEMT Q1/Q2 are on the bottom side of PCB)

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	
2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as possible
2b	LS Gate Driver loop (turn-off)	C7,U1,R _{goff} ,Q2	1 3 3 3 3 3 3

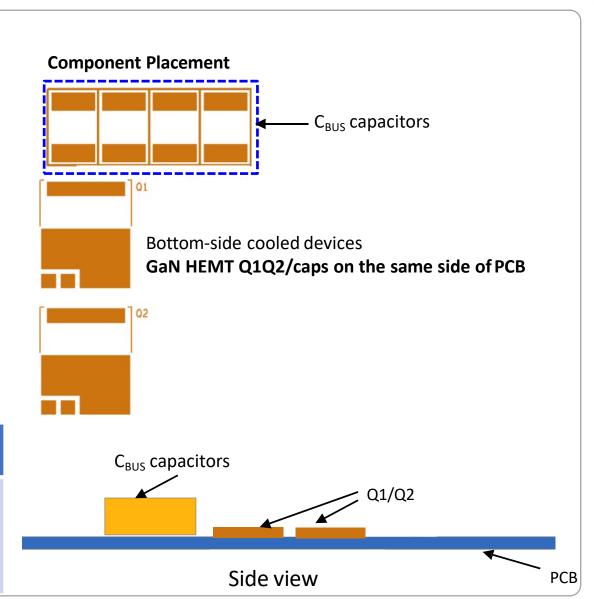
Component Placement

Q1

Q2


October 2020

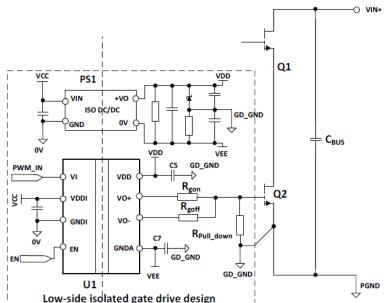
C_{BUS} capacitors


Step 2.1: Power commutation loops (Bottom-side cooling)

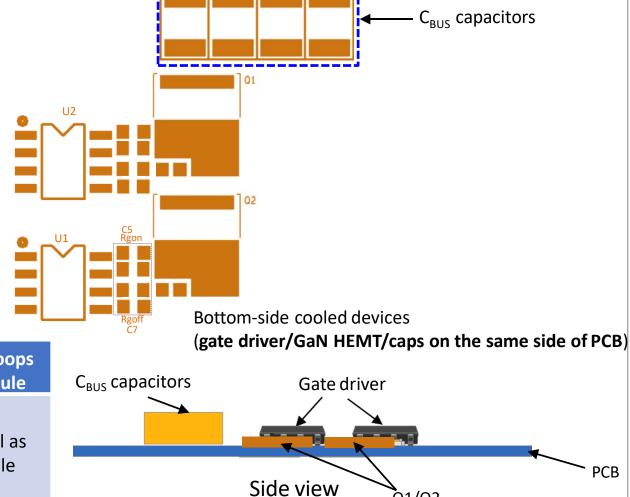
Example: Isolated gate driver circuit w/ single GaN HEMT

Place components as close together as possible

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	
2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as possible
2b	LS Gate Driver loop (turn-off)	C7,U1,R _{soff} ,Q2	p = 33.0.0



Step 2.2: Gate Driver Circuit Loop (Bottom-side cooling)


Example: Isolated gate driver circuit with single GaN HEMT

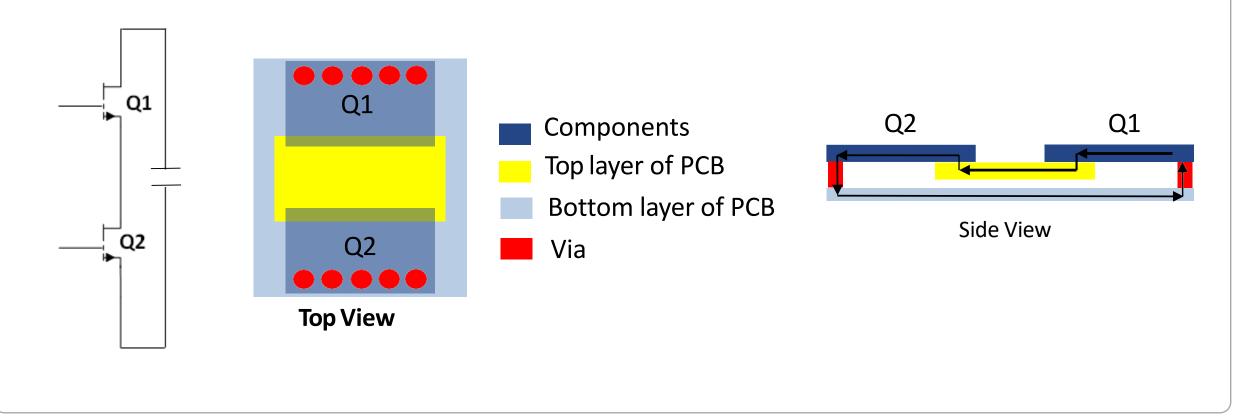
- Locate drivers close to the gate
- Use/create kelvin source for driver return

GaN Enhancement-mode HEMT Half Bridge

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	
2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as possible
2b	LS Gate Driver loop (turn-off)	C7,U1,R _{goff} ,Q2	p = 30.0.0

Component Placement

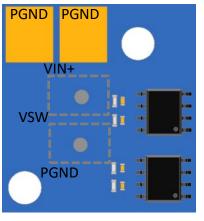
Q1/Q2


PCB Layout Steps

- Step 1: Prepare the schematics and identify the components of each critical loop
 - Isolated gate driver circuit for single GaN HEMTs
 - Isolated gate driver circuit for paralleled GaN HEMTs
 - Half-bridge Bootstrap gate driver circuit
 - EZDriveSM circuit
- Step 2: Place the components according to the design priority and current direction
 - Put components as close as possible
 - According to the current direction, set the component in sequence
 - If there is a conflict for minimizing all the loops, refer to the priority listed on slides 7/8/9/10.
- Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

Step 3.1: Introduction - Magnetic Flux Cancellation for Lower Inductance

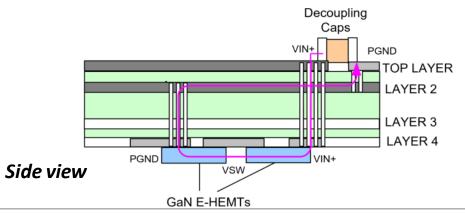
- When two adjacent conductors are located close with opposite current direction, magnetic flux generated by two current flows will cancel each other.
- This magnetic flux canceling effect can lower the parasitic inductance.
- Arrange the layout so that high-frequency current flows in opposite direction on two adjacent PCB layers.

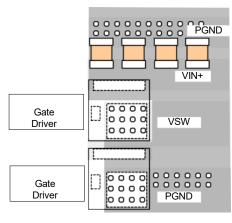


October 2020

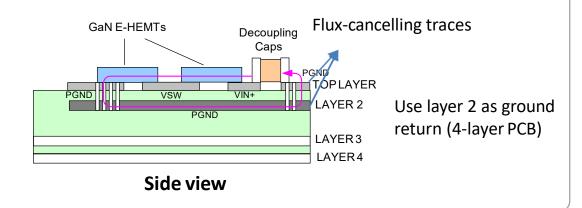
Step 3.2: Connect the components with Flux-cancelling traces

 Connect the components with Flux-cancelling traces, see below example of top-side cooled devices and bottom-side cooled devices.

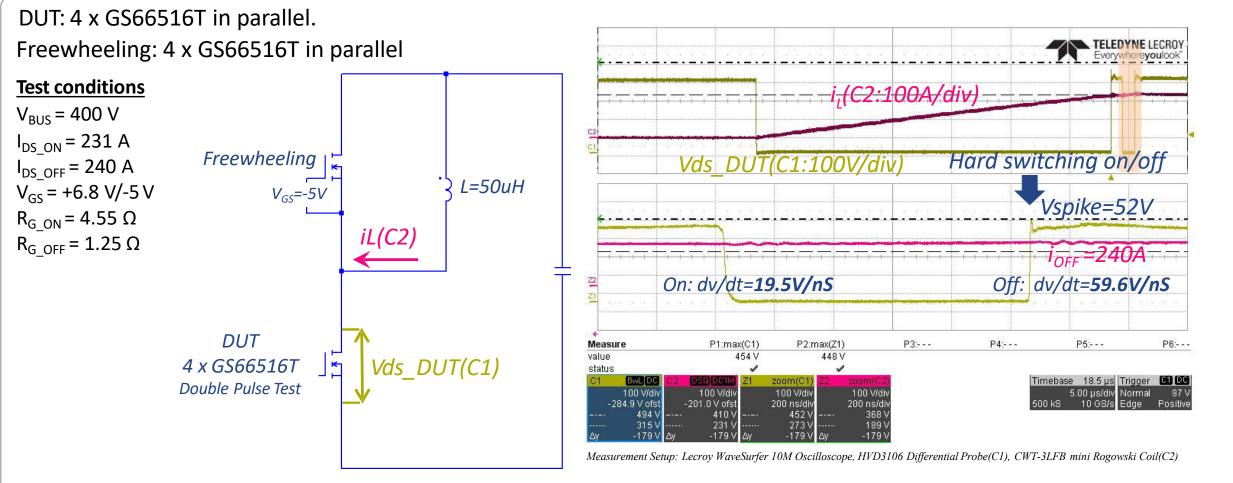

Example: Top-side cooled devices (GaN HEMT is on the bottom side of PCB)


Q1 Q2

Top view


Bottom view

Example: Bottom-side cooled devices (gate driver/GaN HEMT/caps on the same side of PCB)


Top view

October 2020

Experimental Example: 400V/240A DPT Hard-switching Test

- Using good engineering practice for PCB layout in designs where GaN Systems' E-HEMTs are paralleled, current balancing and clean switching can be achieved. Hard switched is possible to full rated current.
- This example demonstrates ~200V V_{DS} margin on a 400V/240A hard-switching test

Summary

- Due to faster switching speed of GaN E-HEMTs, good engineering practice for PCB layout techniques are required to minimize parasitic inductance and fully utilize these advanced devices.
- Optimizing the PCB layout is important to achieve the maximum performance capability of GaN based designs. With optimum board layout combined with low GaN*PX*® package inductance, GaN Systems' E-HEMTs exhibit peak switching performance.

www.tdehirel.com

www.gansystems.com

