**DR063** 





### 0.5 to 2.4GHz Instantaneous Frequency Measurement Unit

The DR063 uses proprietary Teledyne Defence & Space (TDS) Technology to provide state of the art performance in a package measuring 130mm x 90mm x 18mm.

The DR063 provides a 12 bit absolute binary digital output word. The frequency measurement word is updated in response to an external trigger input signal, and internally generated trigger or is continuously updated every clock cycle. These operational modes are controlled via a serial interface.

The 12 bit frequency word offers a nominal resolution of 0.5MHz with an RMS accuracy of 2MHz for SNRs of +3dB or better. The unique feature of the DR063 is the ability to

configure the IFM during operation in order to achieve improved frequency resolution and accuracy when capturing longer pulses under poor SNR conditions.

The DR063 has a smaller frequency footprint and lower power consumption than traditional 0.5 - 2.4 GHz IFM's.

External connections are made via a 51 – way micro-D Type connector for power, frequency measurement data and control. An SMA (female) is provided for the RF input.

For further information, please contact the TDS sales team.

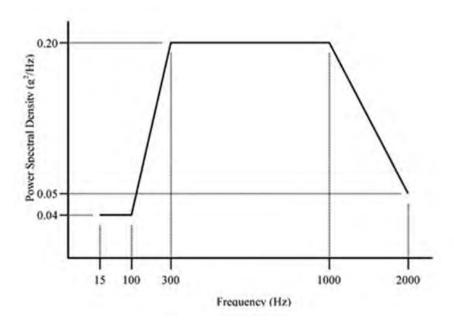
#### **FEATURES**

- Full 0.5 2.4GHz
- 12 Bit Resolution 60dB Dynamic Range
- 50ns Pulse Width Measurement Internally or Externally Triggered Very Small Size
- Low Power Consumption Software Configurable

#### **APPLICATIONS**

- Electronic Support Measures (ESM)
- Communications Jamming (COMJAM)
- Radar Warning Receivers (RWR)
- ESM for low weight, low power, small or portable payload applications

# **SPECIFICATIONS**


| Parameter                                 | Units | Min   | Nominal   | Max   |  |
|-------------------------------------------|-------|-------|-----------|-------|--|
| Operating Frequency Range                 | GHz   | 0.5   |           | 2.4   |  |
| Unambiguous Bandwidth                     | GHz   | 0.45  |           | 2.45  |  |
| Frequency Resolution                      | MHz   |       | 0.5       |       |  |
| Digital Frequency Resolution              | Bits  |       | 12        |       |  |
| System Clock Rate                         | MHz   | 49.99 | 50        | 50.01 |  |
| Throughput Time                           | ns    |       | 200       |       |  |
| RF Input Dynamic Range                    | dBm   | -55   |           | 5     |  |
| RF Input Signal/Noise Ratio               | dBm   | 0     |           |       |  |
| RF Input Pulse Width                      | ns    | 50    |           | CW    |  |
| RF Input VSWR                             |       |       |           | 2:2:1 |  |
| Frequency Error (RMS)                     |       |       |           |       |  |
| 0dB SNR                                   | MHz   |       |           | 4     |  |
| 3dB SNR                                   | MHz   |       |           | 2     |  |
| Frequency Peak Error                      | MHz   |       | 15        |       |  |
| Peak Error Rate                           |       |       |           |       |  |
| 0dB SNR                                   | %     |       |           | 0.4   |  |
| 3dB SNR                                   | %     |       |           | 0.04  |  |
| Bad data Error rate                       |       |       |           |       |  |
| 0dB SNR                                   | %     |       |           | 3     |  |
| 3dB SNR                                   | %     |       |           | 1     |  |
| Simultaneous Signal: Level                | dBc   | 6     |           |       |  |
| Simultaneous Signal: Frequency Separation | MHz   | 50    |           |       |  |
| Temperature Range                         | °C    | -40   |           | +85   |  |
| Power Consumption                         | Watts |       | 6         |       |  |
| Power Supply Current: +5v Rail            | mA    |       | 300       |       |  |
| Power Supply Current: +3.3V Rail          | mA    |       | 1300      |       |  |
| Power Supply Current: -5V Rail            | mA    |       | 60        |       |  |
| Size                                      | mm    |       | 130x90x18 |       |  |
| Weight                                    | g     |       | 400       |       |  |

## **ENVIRONMENTAL SPECIFICATION**

Operating temperature: -40°C to +85°C

Sinusoidal Vibration: 5g RMS between 50Hz to 1KHz (MIL-STD-202F Method 204) Random Vibration: MIL-STD-810F Method, 514.5.

Power Spectral Density according to figure below Mechanical



Mechanical Shock: MIL STD 202 F - Method 213 B Test condition: 20g / 11 ms half-sinusoidal.

Humidity: MIL-STD-810F Method 507.4. Procedure 2.

R.H. 85% to 95% Temperature between +30°C and +60°C Salt Fog: MIL-STD-810F Method 509.4.

Reliability: Failure Rate of 20 per million hours, which equates to an MTBF of 50,000 hours for a ARW Airborne Rotary Wing Environment and a Failure Rate of 15 per million hours, which equates to an MTBF of 67,000 for a AUF, Airborne Uninhabited Fighter Environment using MIL-HDBK-217F Parts Stress Method.

Both predictions are for an ambient temperature of +70 °C.

#### **TECHNICAL INFORMATION**

The ability for the DR063 to be configured on the fly to suit operational scenarios offers performance attributes unmatched by currently available IFMs. Specifically, increased resolution and accuracies can be achieved for longer pulse durations. A number of modes of operation are available via a serial interface, these include:

| Operating Mode | Operation                                                                                                                                                                                                                                                                                                                                                                           |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Standard       | Configured to measure minimum pulse width (50 ns)                                                                                                                                                                                                                                                                                                                                   |  |
| Selectable PW  | Minimum pulse width is user selectable (50ns to 'CW'). Unit measures longer pulses with improved accuracy and resolution.                                                                                                                                                                                                                                                           |  |
| Variable PW    | Unit performs measurements of pulse on continuous basis throughout the duration of the pulse. Subsequent measurements have improved resolution and accuracy. In this mode, frequency measurement accuracy is optimised on a pulse-by-pulse basis.                                                                                                                                   |  |
| Trigger Mode   | Continuous clocked output: Frequency output word is updated at system clock rate.  Externally Triggered: Frequency output word is updated in response to rising edge of external trigger input.  Internally Triggered: Frequency output word is updated in response to rising edge of internally generated trigger input (derived from internal pulse detection threshold circuit.) |  |
| Trigger Level  | The internal trigger level can be adjusted to optimise the POI and false alarms in the presence of injected noise or CW.                                                                                                                                                                                                                                                            |  |
| Power Down     | Various power down modes can be configured reduce quiescent power consumption.                                                                                                                                                                                                                                                                                                      |  |

The Variable PW mode uses Teledyne propriety techniques, and as such offers improved performance levels when compared with standard Instantaneous Frequency Measurement units currently available.

## **TECHNICAL INFORMATION**

|    | INICAL INI ORIVIA |                |   |       |                                |  |
|----|-------------------|----------------|---|-------|--------------------------------|--|
| P1 | Signal            | Direction      |   | 11/2  | Description                    |  |
| 1  | Reserved          | Output         | - | LVDS  |                                |  |
| 2  | Reserved          | Output         | - | LVDS  |                                |  |
| 3  | Freq(1)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 4  | Freq(1)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 5  | Freq(2)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 6  | Freq(2)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 7  | Freq(3)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 8  | Freq(3)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 9  | DGND              | Power          |   |       |                                |  |
| 10 | Freq(4)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 11 | Freq(4)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 12 | Freq(5)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 13 | Freq(5)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 14 | Freq(6)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 15 | Freq(6)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 16 | Freq(7)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 17 | Freq(7)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 18 | DGND              | Power          |   |       |                                |  |
| 19 | +3.3V             | Power          |   |       |                                |  |
| 20 | Freq(8)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 21 | Freq(8)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 22 | Freq(9)+          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 23 | Freq(9)-          | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 24 | Freq(10)+         | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 25 | Freq(10)-         | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 26 | +5V               | Power          |   |       |                                |  |
| 27 | AGND              | Power          |   |       |                                |  |
| 28 | DataValid+        | Output         | - | LVDS  | Data Valid Signal              |  |
| 29 | DataValid-        | Output         | - | LVDS  | Data Valid Signal              |  |
| 30 | Freq_BD+          | Output         | - | LVDS  | Frequency Measurement Bad Data |  |
| 31 | Freq_BD-          | Output         | - | LVDS  | Frequency Measurement Bad Data |  |
| 32 | Reserved          | Output         | - | LVTTL |                                |  |
| 33 | RF Detect         | Output         | - | LVTTL | RF Present asynchronous        |  |
| 34 | RF_Pres+          | Output         | - | LVDS  | RF Present synchronous         |  |
| 35 | RF_Pres-          | Output         | - | LVDS  | RF Present synchronous         |  |
| 36 | +3.3V             | Power          |   |       |                                |  |
| 37 | STATUS            | Output         | - | LVTTL | IFM passed self-test           |  |
| 38 | Serial Out        | Output         | - | LVTTL | Serial Data Link Output        |  |
| 39 | Serial In         | Input          | - | LVTTL | Serial Data Link Input         |  |
| 40 | Reserved          | Input          | - | LVTTL | Reserved                       |  |
| 41 | +5V               | Power          |   |       |                                |  |
| 42 | Freq(11)+         | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 43 | Freq(11)-         | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 44 | Reserved          | Input          | - | LVTTL | Reserved                       |  |
| 45 | Freq(12)+         | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 46 | Freq(12)-         | Output         | - | LVDS  | Frequency Measurement Word     |  |
| 47 | -5V               | Power          |   |       |                                |  |
| 48 |                   |                | - | LVDS  | External Trigger Input         |  |
| .0 | TRIG_IN -         | Input          |   | 2120  | External ringger input         |  |
| 49 |                   | Input<br>Input | - | LVDS  | External Trigger Input         |  |
|    | TRIG_IN -         | -              |   |       |                                |  |

#### **BLOCK DIAGRAM**

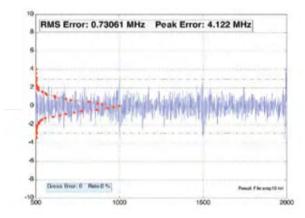



Fig 1. Clean Signal

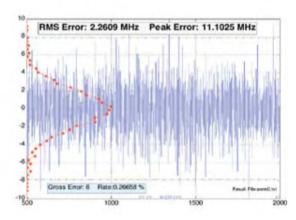
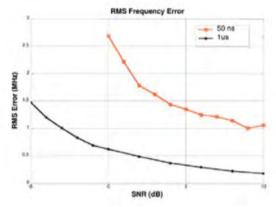
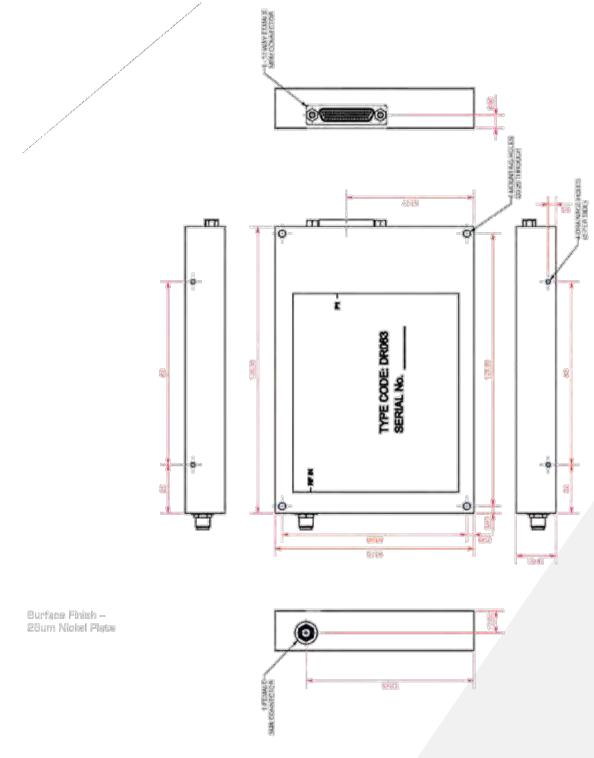



Fig 2. 0dB SNR





Fig 3. RMS Error vs. SNR

Figures 1 & 2 show typical performance achieved in clean signal and 0dB SNR respectively. Although these test were performed with CW signals, the performance with 50 ns pulses is only marginally reduced.

Figure 3 shows how RMS frequency errors can be reduced when selectable pulse width mode is used. A 1 us pulse is measured with improved accuracy over a system configured to measure 50 ns pulses. Furthermore, pulses are measured reliably in negative SNR conditions.

DR063

# **OUTLINE DRAWING**

