

SURFACE MOUNT HIGH FREQUENCY, ACTIVE RF SWITCH SPDT

SERIES

SWITCH TYPE

InP1012	Solid State, InP-HEMT Active RF Switch

DESCRIPTION

The InP1012-20 is a highly compact, reflective SPDT Active RF switch, manufactured using Teledyne's high-speed, lowloss InP HEMT process. The switch die is packaged in a low-loss, surface mount package, with a small form factor: $3 \mathrm{~mm}(\mathrm{~L}) \times 3 \mathrm{~mm}(\mathrm{~W}) \times 1 \mathrm{~mm}(\mathrm{H})$. It supports a wide frequency range from DC to 20 GHz , and delivers low insertion loss, fast switching time, and good isolation-making this switch ideal for test and measurement, microwave communications, and radar applications. The $\mathrm{InP1012-20}$ can also tolerate up to 100 krads of radiation, alowing it to be used in space applications.

The InP1012-20 features:

- Broad frequency bandwidth, greater than 20 GHz
- Small form factor, $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 1 \mathrm{~mm}$
- Low insertion loss
- Very High linearity
- Wide operating temperature
- Radiation tolerant up to 100 krads
- Very fast switching time of less than 100 ns
- RoHS Compliant

The following unique construction features and manufacturing techniques provide excellent robustness to environmental extremes and overall high reliability:

- Monolithic solid-state switch with no mechanical wear
- Flip-chip packaging provides shock \& vibration resistance
- ENEPIG surface finish for solder bonding
- Low loss package with organic overmold
- Test board with K-connectors can be provided
-

ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS

Temperature (Ambient)	Storage	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Operating	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Enclosure	Low-Loss Surface Mount Package	
ESD Sensitivity (HBM)	Class 1	
MSL Sensitivity	TBD	
Radiation Tolerance	100 krads	

Teledyne Part Numbering System for InP1012

InP1012-20
TYPICAL RF CHARACTERISTICS (See RF Notes)

Frequency (GHz)

Frequency (GHz)

TYPICAL POWER HANDLING CHACTERISTICS

RF NOTES

1. Test conditions: a. Fixture: .020" RO4350B, ENIG plated, with 2.4 mm connectors.
(Trademark of Rogers Corporation.)
b. RF ground pad is soldered to PCB RF ground plane.
c. Room ambient temperature.
d. Terminals not tested were terminated with 50 -ohm load.
e. Contact signal level: -10 dBm .
f. No. of test samples: 1.
2. Data presented herein represents typical characteristics and is not intended for use as specification limits.

Everywhereyoulook
NARROWBAND INSERTION LOSS AND RETURN LOSS PLOTS

0.1-2 GHz

4-6 GHz

2-4 GHz

6-8 GHz

8-12 GHz

12-20 GHz

Everywhereyoulook"
TYPICAL ELECTRICAL SPECIFICATIONS (@ $25^{\circ} \mathrm{C}, \mathrm{V} 1=\mathrm{ON}, \mathrm{V} 2=O F F O R \mathrm{~V} 1=\mathrm{OFF}, \mathrm{V} 2=\mathrm{ON}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$) OPERATING FREQUENCY: DC - 20GHz

Parameter/Condition	Path	Condition	Typical	Unit
Insertion Loss	RFC-RFX	$\begin{aligned} & \mathrm{DC}(20 \mathrm{mV}-200 \mathrm{mV})^{*} \\ & 10 \mathrm{kHz} \\ & 100 \mathrm{MHz} \\ & 2 \mathrm{GHz} \\ & 4 \mathrm{GHz} \\ & 6 \mathrm{GHz} \\ & 8 \mathrm{GHz} \\ & 12 \mathrm{GHz} \\ & 16 \mathrm{GHz} \\ & 20 \mathrm{GHz} \end{aligned}$	$\begin{array}{\|l} \hline 2.0 \\ 0.9 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.8 \\ 1.7 \\ 1.9 \\ 2.3 \\ 2.5 \end{array}$	dB dB
Isolation	RFC-RFX	$\begin{aligned} & 10 \mathrm{kHz} \\ & 100 \mathrm{MHz} \\ & 2 \mathrm{GHz} \\ & 4 \mathrm{GHz} \\ & 6 \mathrm{GHz} \\ & 8 \mathrm{GHz} \\ & 12 \mathrm{GHz} \\ & 16 \mathrm{GHz} \\ & 20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \hline 67 \\ & 60 \\ & 43 \\ & 40 \\ & 36 \\ & 34 \\ & 31 \\ & 29 \\ & 26 \end{aligned}$	dB dB
Isolation	RF1-RF2	$\begin{aligned} & 100 \mathrm{MHz} \\ & 100 \mathrm{MHz}-20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 69 \\ & 32 \end{aligned}$	$\begin{aligned} & d B \\ & d B \end{aligned}$
Return Loss (active port)	RFC-RFX	$\begin{aligned} & 100 \mathrm{MHz} \\ & 2 \mathrm{GHz} \\ & 4 \mathrm{GHz} \\ & 6 \mathrm{GHz} \\ & 8 \mathrm{GHz} \\ & 12 \mathrm{GHz} \\ & 16 \mathrm{GHz} \\ & 20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 23 \\ & 22 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 24 \\ & 15 \end{aligned}$	dB dB
Input 0.1 dB compression point		$\begin{aligned} & 100 \mathrm{MHz} \\ & 6 \mathrm{GHz} \\ & 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 3.1 \\ & 15.7 \\ & 14.9 \end{aligned}$	dBm dBm dBm
Input 1dB compression point		$\begin{aligned} & 100 \mathrm{MHz} \\ & 6 \mathrm{GHz} \\ & 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & 21.1 \\ & 21.8 \end{aligned}$	dBm dBm dBm
Input 3 ${ }^{\text {rd }}$ Order Intercept (IIP3)		10 GHz	37.5	dBm

* Insertion loss increases with a higher DC offset, up to the 2.5 Vdc Max.

Evaluation Board

Note: RF and Signal Integrity measurements were made using the custom-built test board shown above
Fixture: . 020 " RO4350B, ENIG plated, with SMA connectors (Trademark of Rogers Corporation.) RF ground pad is soldered to PCB RF ground plane.

To order the Evaluation Board, please use the following part number:

Everywhereyoulook"
GENERAL ELECTRICAL SPECIFICATIONS (@25 $\left.{ }^{\circ} \mathrm{C}\right)$

Contact Arrangement	1 Form C (SPDT)
Rated Duty	Continuous
Operating Power	$1-2 \mathrm{~mW}$
Switching Time	$60-100 \mathrm{~ns}$

Note: Use DC blocking capacitors at RF ports.

RECOMMENDED OPERATING CONDITIONS

Parameter	MIN	TYPICAL	MAX	UNIT
Control ON (V1,V2)	-0.3	0	+0.3	V
Control OFF (V1,V2)	-2.0	-2.5	-3.0	V
Control Current		200	700	μA

Note: Operation between -0.3 V and -2.0 V is not recommended.

SWITCH STATES

V1	V2	RF1	RF2	STATE
-2.5 V	-2.5 V	OFF	OFF	1
-2.5 V	0 V	OFF	ON	2
0 V	-2.5 V	ON	OFF	3
0 V	0 V	ON	ON	4

State 1

State 2

State 3

State 4

ABSOLUTE RATINGS

Parameter/Condition	MIN	MAX	UNIT
Control Voltage (V1,V2)	-3.0	+0.3	V
		$8.6 @ 100 \mathrm{MHz}$	dBm
RF Input Power P1.0 dB (RFC-RFX, 50 Ω)		$21.1 @ 6 \mathrm{GHz}$	
		dBm	
		$21.8 @ 18 \mathrm{GHz}$	
dBm			
RF Contact Maximum DC Offset		2.5	V
Maximum Junction Temperature*		+180 (est.)	${ }^{\circ} \mathrm{C}$
Storage Temperature Range*	-65	+180 (est.)	${ }^{\circ} \mathrm{C}$

*InP die: $200^{\circ} \mathrm{C}$ for 30 hours, BCB cure temperature: $250^{\circ} \mathrm{C}$ for 1 hour, PbSn solder reflow temperature: $250^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, \mathrm{~Pb} 37 / \mathrm{Sn} 63$ solder melting point: $183^{\circ} \mathrm{C}, \mathrm{MEG}$ TRON 6 substrate: $260^{\circ} \mathrm{C}$, Sumitomo G770 epoxy overmold: $260^{\circ} \mathrm{C}$

InP1012-20
OUTLINE DIMENSIONS

Pad No.	Pad Name	Description
$\mathbf{1}$	GND	Ground
2	RFC	RF Common Port
3	RF1	RF Port 1
4	RF2	RF Port 2
5	V1	Control Input 1
6	V2	Control Input 2

TAPE AND REEL PACKAGING OPTIONS

$A o=3.30 \pm 0.1$
SECTON Y-Y $\quad B 0=3.30 \pm 0.1$
$K o=1.20 \pm 0.1$
$F=5.50 \pm 0.05$
$\mathrm{P} 1=8.00 \pm 0.1$
$W=12.00 \pm 0.3$

Notes:

1) Cumulative Tolerance for 10 Sprocket Holes $\pm 0.2 \mathrm{~mm}$
2) Ao and Bo measured from a plane 0.3 mm above bottom of pocket
3) Pocket position relative to sprocket hole and true positon of pocket
4) Tape Engineered to comply with ANSI/EIA 481 B (July 2002)
5) Material does not contain heavy metals
6) Camber in compliance with ANSI/EIA 481 B (July 2002)

DIE INFORMATION

PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITION
Die Size, Singulated (x, y)	820×950	830×960	840×970	$\mu \mathrm{~m}$	Including excess InP, maximum tolerance $= \pm 10 \mu \mathrm{~m}$
Wafer Thickness	615	625	635	$\mu \mathrm{~m}$	
Bump Pitch	150			$\mu \mathrm{~m}$	
Bump Height	50	60	70	$\mu \mathrm{~m}$	
Bump Diameter		79		$\mu \mathrm{~m}$	
UBM Diameter	65	69	74	$\mu \mathrm{~m}$	

[^0]Everywhereyoulook"

Handling Guidelines for HEMT RF Switches (InP Series)

1. Do not drop, throw, or in any way mishandle individual switches or cartons containing switches.
2. Store switches in a humidity-controlled, shock- and vibration-free environment. Storage temperature range limits are $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, however, when possible, switches should be stored in an ambient environment.
3. Do not expose switches to humid condition such that condensation may be formed due to sudden drop in temperature. Switches shall be stored in condensation free condition.
4. Do not stack heavy objects directly onto switches.
5. Active RF switches shall be treated as Electrostatic Discharge (ESD) sensitive and shall be handled accordingly. Always work in ESD protected station and wear wrist strap before handling the device.
6. When removing switches from packs, do so with extreme care. Do not allow the switches to fall onto any hard surface during unpacking. Do not "pour" the switches from the packing. Do not allow switches to fall onto the floor.
7. When transferring switches to a production area after unpacking, do so only in a suitable container, transport the devices in anti-static container, taking care not to drop the switches into the container, or to drop, throw or mishandle the container in any way.
8. For either metal-cover switches that are hermetically sealed or plastic switches that are not hermetically sealed, any damage to the casing, leads, or connector may compromise the relay's performance and reliability.
9. Never subject switches to ultrasonic cleaning environment.
10. Do not submerge plastic switches, which are not hermetically sealed, in cleaning solution or spray aqueous cleaning solution directly onto switches.
11. For plastic switches, which are not hermetically sealed, switches should be baked before use. After bake, switches must be mounted within 8 hours. Switches must be baked again if this 8 hour time period is exceeded. The recommended bake profile is $125^{\circ} \mathrm{C}$ for 1 hour.
12. After the reflow/mounting process, switches should be baked again after cleaning, prior to a second reflow, or prior to conformal coating.
13. Unless otherwise specified, do not subject switches and relay terminals to reflow solder temperatures above $245^{\circ} \mathrm{C}, 6$ seconds maximum. If hand soldering is used, the solder iron tip shall be properly grounded. Observe IPC J-HDBK- 001, paragraph 6.1.0.1 guidelines for heat sensitive components when hand soldering switches.
14. If reshipping product do so in original packaging from factory.
15. Switches should not be exposed to any process or environment that exceeds any limits within this guideline or any published specification that applies to the relay.

[^0]: Contact factory for die RF performance and additional information

