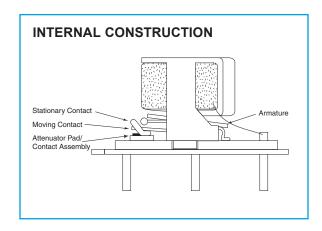


ULTRAMINIATURE BROADBAND ATTENUATOR RELAYS

SERIES	RELAY TYPE	
A150	Attenuator Relay series, DC- 3 GHz	

DESCRIPTION

The Series A150 ultraminiature Attenuator Relays are designed for attenuating RF signals in 50-ohm systems over a frequency range from DC to 3 GHz. Their low profile and small grid spacing makes them ideal for use when packaging density is a prime consideration. The A150 relays eliminate the need for additional external resistors.


These single section, switchable attenuator relays have internal matched thin film attenuator pads in "L," "T" or "Pi" • configurations, as applicable. Relays are available in fixed • increments of 1, 2, 3, 4, 5, 6, 8, 10, 16 and 20 dB, which can used individually or in combination to achieve the attenuation • levels desired.

The A150 feature:

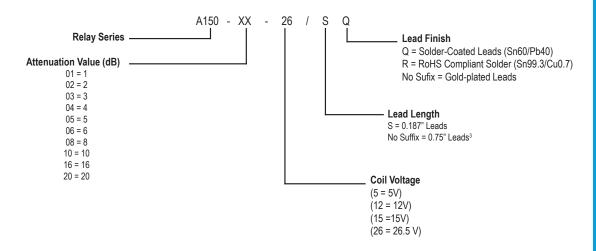
- Unique uni-frame motor design which provides high magnetic efficiency and mechanical rigidity.
- Minimum mass components and welded construction for maximum resistance to shock and vibration.
- Advanced cleaning techniques which assures internal cleanliness
- Gold plated, precious metal contacts, which provide excellent intermodulation performance.
- · Flat amplitude vs. frequency response.
- High isolation between control and signal path.
- · Stable attenuation vs. temperature.
- · Excellent phase linearity.
- · Highly resistant to ESD.

Patent No. 5,315,273

ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS			
Temperature (Ambient)	–65°C to +125°C		
Vibration (Note 1)	10 g's to 2000 Hz		
Shock (Note 1)	30 g's, 6 ms half sine		
Enclosure	Hermetically sealed		
Weight	0.11 oz. (3.12g) max.		

GENERAL ELECTRICAL SPECIFICATIONS (-65°C to +125°C unless otherwise noted)(Notes 2 & 3)

Contact Life Ratings		10,000,000 cycles (typical) at low level	
Operate Time (Note 8)	Max.	4.0 ms max. at nominal rated coil voltage	
	Тур.	2.0 ms max. at nominal rated coil voltage	
Insulation Resistance		1,000 M Ω min. between mutually isolated terminals	
Dielectric Strength		350 (Vrms/60 Hz) @ atmospheric pressure	

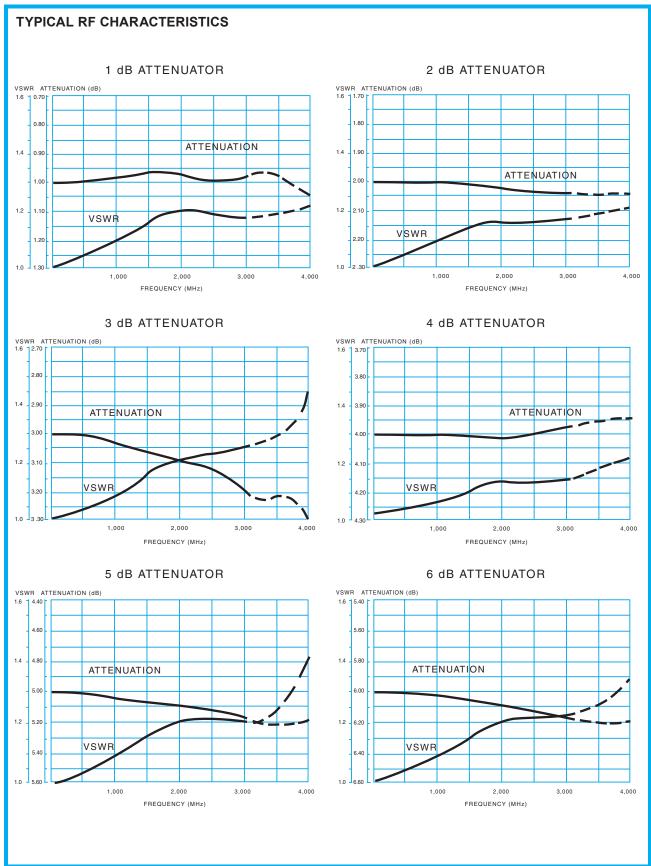

DETAILED ELECTRICAL SPECIFICATIONS (-65°C to +125°C unless otherwise noted)(Note 3)

BASE PART NUMBERS (A150)		A150-dB-5	A150-dB-12	A150-dB-15	A150-dB-26
Coil Voltage (Vde)	Nom.	5.0	12.0	15.0	26.5
Coil Voltage (Vdc)	Max.	6.0	16.0	20.0	32.0
Coil Resistance (Ohms ±20%)		50	390	610	1,560
Pick-Up Voltage (Vdc, Max.)		3.8	9.0	11.3	18.0

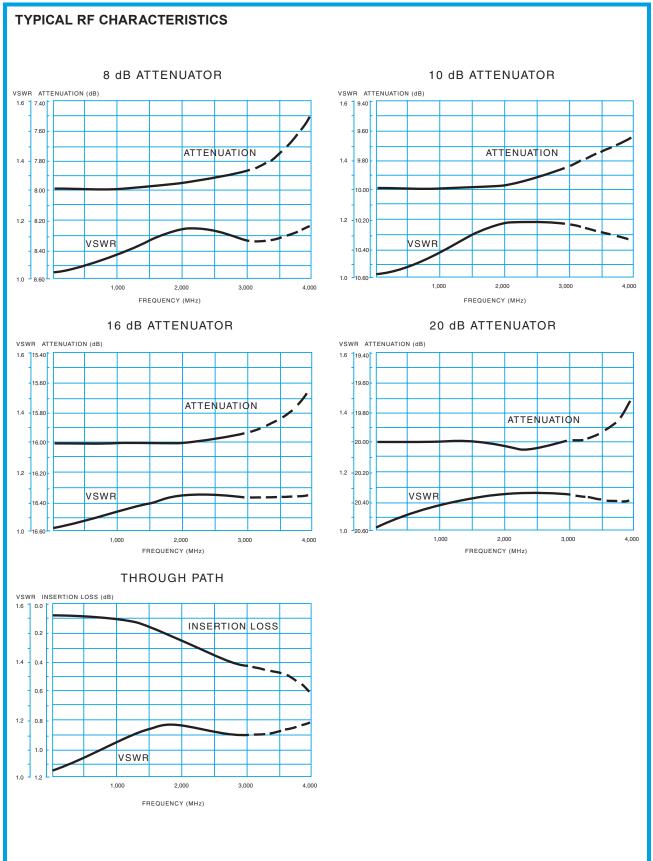
GENERAL PERFORMANCE (-55°C to +85°C)

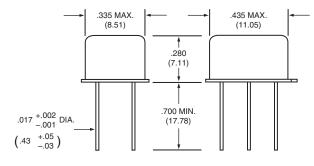
PARAMETER	MINIMUM	TYPICAL	MAXIMUM
Operating Frequency (GHz)	0.0	-	3.0
Power (W) (Notes 5 and 6)	-	-	1.0
Impedance (Ω)	-	50	-

Part Numbering System (Notes 11 & 12)

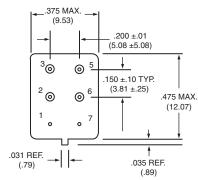


NOTES:

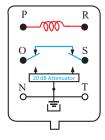

- 1. Contacts will exhibit no contact chatter in excess of 10 µs or transfer in excess of 1 µs.
- 2. "Typical" characteristics are based on available data and are best estimates. No on-going verification tests are performed.
- 3. Unless otherwise specified, parameters are initial values.
- 4. Relays may be operated at higher frequencies with reduced RF performance.
- 5. For optimal RF performance, solder case to RF ground plane.
- 6. Attenuation values shown are with reference to the through path (low loss state).
- 7. Power handling for case temperatures of –55°C to +55°C is 1 Watt. Derate power handling 25 mW/°C above +55°C. Case measurement point is adjacent to the relay tab.
- 8. Do not operate coil at maximum coil voltage continuously.
- 9. Insert attenuation value, see part numbering system.
- 10. Switching time includes bounce.
- The slash and characters appearing after the slash are not marked on the relay.
- 12. Unless otherwise specified, relays will be supplied with gold-plated.


RF Performance (-55°C to +85°C)

BASE PART NUMBERS (RF180)	RANGE	TYPICAL	MAXIMUM
	DC - 1 GHz	0.1	0.25
Insertion Loss (dB)	1 - 2 GHz	0.2	0.35
	2 - 3 GHz	0.3	0.055
	DC - 1 GHz	1.10	1.20
VSWR (Through Path)	1 - 2 GHz	1.20	1.25
	2 - 3 GHz	1.25	1.30
	DC - 1 GHz	1.20	1.25
VSWR (Attenuated Path)	1 - 2 GHz	1.30	1.35
	2 - 3 GHz	1.40	1.45


ATTENUATION (dB)	RANGE	MINIMUM	TYPICAL	MAXIMUM
	DC - 1 GHz	0.95	1.0	1.05
1	1 - 2 GHz	0.925	1.0	1.075
	2 - 3 GHz	0.875	1.0	1.125
	DC - 1 GHz	1.9	2.0	2.15
2	1 - 2 GHz	1.85	2.0	2.15
	2 - 3 GHz	1.75	2.0	2.25
	DC - 1 GHz	2.85	3.0	3.15
3	1 - 2 GHz	2.77	3.0	3.23
	2 - 3 GHz	2.62	3.0	3.38
	DC - 1 GHz	3.8	4.0	4.2
4	1 - 2 GHz	3.7	4.0	4.3
	2 - 3 GHz	3.5	4.0	4.5
	DC - 1 GHz	4.75	5.0	5.25
5	1 - 2 GHz	4.62	5.0	5.38
	2 - 3 GHz	4.37	5.0	5.63
	DC - 1 GHz	5.7	66.0	6.3
6	1 - 2 GHz	5.55	6.0	6.45
	2 - 3 GHz	5.25	6.0	6.75
	DC - 1 GHz	7.88	8.0	8.12
8	1 - 2 GHz	7.76	8.0	8.24
	2 - 3 GHz	7.52	8.0	8.48
	DC - 1 GHz	9.85	10.0	10.15
10	1 - 2 GHz	9.7	10.0	10.3
	2 - 3 GHz	9.4	10.0	10.6
	DC - 1 GHz	15.76	16.0	16.25
16	1 - 2 GHz	15.52	16.0	16.48
	2 - 3 GHz	15.04	16.0	16.96
	DC - 1 GHz	19.8	20.0	20.2
20	1 - 2 GHz	19.6	20.0	20.4
	2 - 3 GHz	19.0	20.0	21.0

OUTLINE DIMENSIONS



(Viewed From Terminals)

SCHEMATIC DIAGRAMS

