

2A, 60Vdc, True Output Status Feedback, Short-Circuit Protected, DC Solid-State Relay

Part* Number	DESC Drawing Number	Relay Description
HD00CFW		Solid State Bolov (SSB)
HD00CFY	88062-008	Solid State Relay (SSR)
HD02CFW		SSR with Switch Status
HD02CFY	88062-006	SSR with Switch Status
HD20CFW		SSR with Short Circuit
HD20CFY	88062-004	Protection
HD22CFW		SSR with Short Circuit
HD22CFY	88062-002	Protection and Switch Status
HD24CFW		SSR with Short Circuit
HD24CFY		Protection and Trip Status

* The Y suffix denotes parameters tested to MIL-PRF-28750

specifications.

The W suffix denotes parameters tested to Teledyne Specifications.

ELECTRICAL SPECIFICATIONS

(-55°C to +105°C UNLESS OTHERWISE NOTED)

INPUT (CONTROL) SPECIFICATIONS

When used in 2 terminal configuration

(TTL or direct control)	Min	Тур	Мах	Units
Input Current		14	15	mA
@ V _{IN} = 5 Vdc (See Fig 2)				
Turn-Off Voltage (Guaranteed Off)			1.5	Vdc
Turn-On Voltage (Guaranteed On)	3.8			Vdc
Reverse Voltage Protection			-32	Vdc
Input Supply Range (See Note 1)	3.8		32	Vdc

INPUT (CONTROL) SPECIFICATIONS

When used in 3 terminal configuration

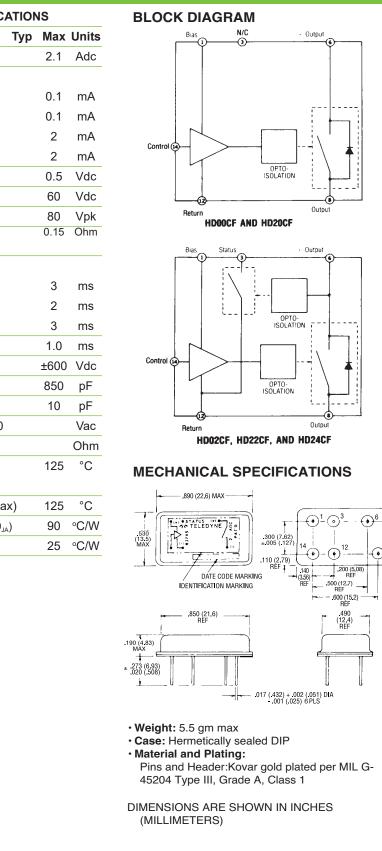
(CMOS or open collector TTL) (See Fig. 1)	Min	Тур	Max	Units
Control Current				
V _{CONTROL} = 5 Vdc			250	µ Adc
V _{CONTROL} = 18 Vdc			1	m Adc
Control Voltage Range	0		18	Vdc
Bias Supply Voltage (See Note 1)	3.8		32	Vdc
Bias Supply Current @ V _{BIAS} = 5 Vdc		14	15	mA
Turn-Off Voltage (Guaranteed Off)	3.2			Vdc
Turn-On Voltage (Guaranteed On)			0.3	Vdc

FEATURES

- Available with short-circuit/current overload protection
- Available with status output
- TTL and CMOS compatible control
- Low ON resistance power FET output
- Fast switching speed
- Meets 28 Vdc system requirements of MIL-STD-704
- Optical isolation
- · Low profile hermetic package
- Built and tested to the requirements of MIL-PRF-28750
- Available to 'W' and 'Y' screening levels

DESCRIPTION

This all solid-state relay utilizes the latest technology to provide a low ON resistance and an optically isolated output. The control (input) and load (output) are optically isolated to protect input logic circuits from voltage and current transients which can occur on the output supply.


The optical isolation also provides a full floating output, thus allowing the load to be connected to either output terminal. The control circuit is buffered to enable the relay to be driven directly from standard CMOS or open collector TTL logic circuits.

Available options include short-circuit and current overload protection, which provides complete protection for both the relay and the system wiring. This feature not only provides

protection should a short or overload occur while the relay is on, but will also provide protection should the relay be switched into a short. In either case, the relay will sense the short-circuit condition and then block it indefinitely until the short is removed and the unit is reset by cycling the input control. The second option is a status output line. This feature is available in either switch status or trip status configurations. Switch status returns the true status of the output switch and is optically isolated from the load. It provides status indication independent of the control circuit of the relay. The status line provides a logic (0) low when the input circuit is off and load circuit continuity is present. The status line provides a logic 1 (high) when the output is on. Trip status, available only with HD24 Series relays, returns a logic 0 (low) if the output trips off and a logic 1 (high) when the output is in a normal mode (on or off). These options are available either together or separately as standard features. Ideal for applications switching 36, 28, 14, and 12Vdc

2A, 60Vdc, True Output Status Feedback, Short-Circuit Protected, DC Solid-State Relay

OUTPUT (LOAD) SPECIFICATIONS

(See Note 2)	Min	Тур	Мах	Units
Continuous Load Current (See Fig. 3))		2.1	Adc
Leakage Current @ V _{LOAD} = 60 Vdc				
HD00CF,HD20CF			0.1	mA
HD24CF			0.1	mA
HD02CF			2	mA
HD22CF			2	mA
Output Voltage Drop			0.5	Vdc
Continuous Operating Load Volta	ge		60	Vdc
Transient Blocking Voltage (See Note	3)		80	Vpk
ON Resistance R_{ds} (on) at T_{J} = 25°C (See Fig 4)			0.15	Ohm
Turn-On Time (See Fig. 5)				
HD00CF,HD20CF			3	ms
HD24CF			2	ms
HD02CF, HD22CF			3	ms
Turn-Off Time (See Fig. 5)			1.0	ms
Electrical System Spike			±600	Vdc
Output Capacitance at 25 Vdc, 100KH	Ηz		850	pF
Input to Output Capacitance			10	pF
Dielectric Strength	1000			Vac
Insulation Resistance @ 500 Vdc	10 ⁹			Ohm
Output Junction Temperature			125	°C
@ I _{LOAD} = I _{MAX RATED}				
Maximum Junction Temperature (T _J Ma	x)	125	°C
Thermal Resistance Junction to Ambi	ent (θյ	<u>д</u>)	90	°C/W
Thermal Resistance Junction to Case	(θ_{JC})		25	°C/W

...

2A, 60Vdc, True Output Status Feedback, Short-Circuit Protected, DC Solid-State Relay

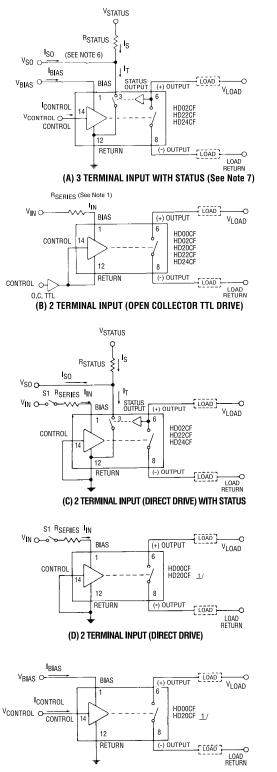
STATUS OUTPUT SPECIFICATIONS (HD02CF AND HD22CF)

Min	Тур	Max	Units
1		18	Vdc
		10	µAdc
		600	µAdc
		3.5	ms
		8.0	ms
			1 18 10 600 3.5

STATUS OUTPUT TRUTH TABLE (HD02CF AND HD22CF)

Control Voltage	Output (Switch)	StateStatus Output Level
High	Off	Low ($V_{SO} \le 0.4$ Vdc)
Low	On	High (V _{so} = V _{status})

ENVIRONMENTAL SPECIFICATIONS

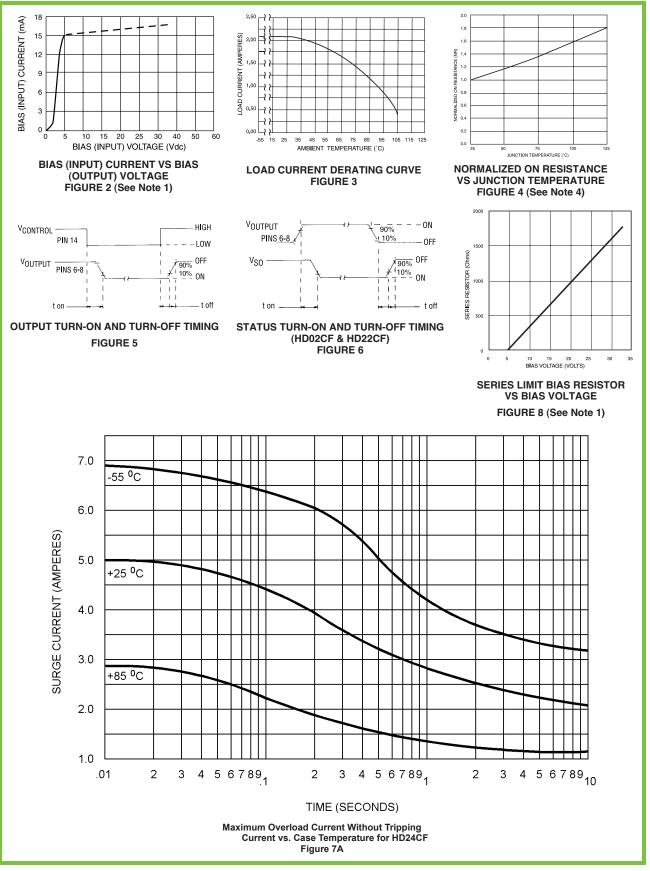

	Min	Тур Мах	Units
Temperature Range			
Operating	-55	+105	°C
Storage	-55	+125	°C
Vibration, 100 g	10	3000	Hz
Constant Acceleration		5000	g
Shock, 11 ms pulse		50	g
Shock, 11 ms pulse		50	

SHORT CIRCUIT PROTECTION SPECIFICATIONS (HD20CF AND HD22CF)

(@ TA = 25°C)	Min	Тур	Max	Units
Time to Trip Turning relay ON into	a short	400		μs
Time to Trip Shorting load while rel	ay is ON	280		μs

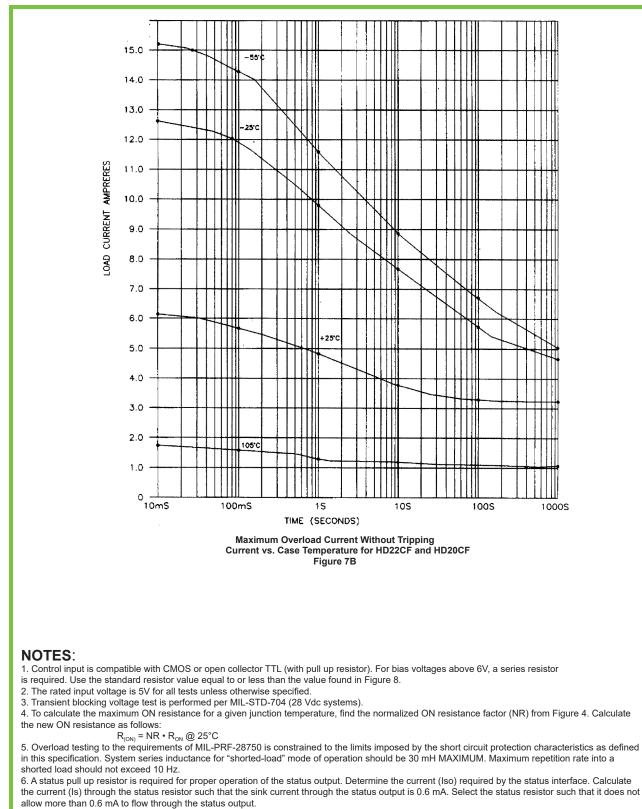
STATUS OUTPUT TRUTH TABLE (HD24CF)

Output (Switch) State	Status Output Level		
Tripped	Low ($V_{so} \le 0.4 \text{ Vdc}$)		
Not Tripped	High ($V_{so} = V_{status}$)		


(E) 3 TERMINAL INPUT WITHOUT STATUS

1/ HD02CF and HD22CF may be wired without the status line as shown in (D) and (E) above.

WIRING CONFIGURATIONS FIGURE 1



2A, 60Vdc, True Output Status Feedback, Short-Circuit Protected, DC Solid-State Relay

2A, 60Vdc, True Output Status Feedback, Short-Circuit Protected, DC Solid-State Relay

$$R_{STATUS} = \frac{V_{STATUS} - 0.4V}{0.6 mA - I_{SO}}$$

7. Inductive loads should be diode suppressed. Input transitions should be < 1 ms duration and the input drive should be a bounceless contact type.