

Series LD00KQ

20A, 270Vdc, Optically Isolated NEW Silicon Carbide DC Solid-State Relay

Part* Number	Relay Description
LD00KQ	270Vdc, 20A Solid State Relay

* The Y suffix denotes parameters tested to MIL-PRF-28750 specifications. The W suffix denotes parameters tested to Teledyne Specifications.

ELECTRICAL SPECIFICATIONS

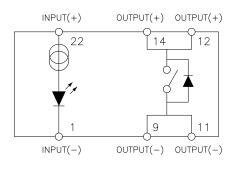
(-55°C to +125°C UNLESS OTHERWISE NOTED)

INPUT (CONTROL) SPECIFICATIONS

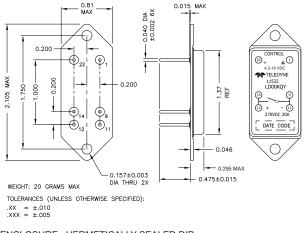
	Min	Тур	Max	Units
Input Current			50	mA
@ V _{IN} = 5 Vdc (See Fig 2,4)				
Turn-Off Voltage (Guaranteed Off)			1.5	Vdc
Turn-On Voltage (Guaranteed On)	4.2			Vdc
Reverse Voltage Protection*			-32	Vdc
Input Supply Range (See Note 1)	4.2		18	Vdc

*Guaranteed by design but not tested

FEATURES


High Voltage

- · Low ON resistance power SiC MOSFET output
- · Fast switching speed
- Meets 270 Vdc system requirements of MIL-STD-704
- Optical isolation
- Low profile hermetic package
- Built and tested to the requirements of MIL-PRF-28750


DESCRIPTION

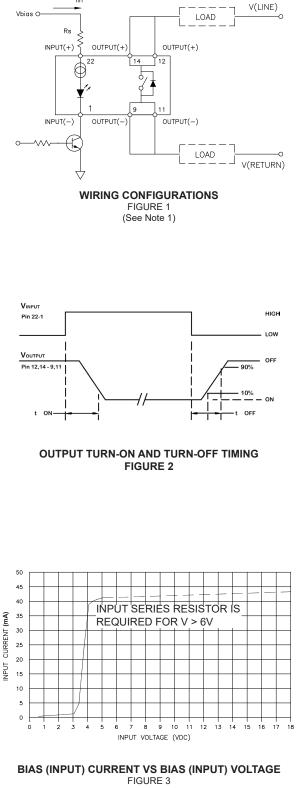
The Series LD00KQ solid-state relays are screened utilizing MIL-PRF-28750 test methods and are packaged in low profile hermetically sealed cases. These relays are constructed with state-of-the-art solid state techniques and feature fully floating power FET output technology. This allows the load to be connected to either output terminal and provides a low ON resistance. The input and output are optically isolated to protect input logic circuits from output transients. This series is designed for output loads up to 270Vdc but is also used in many applications switching 36, 28, 14, and 12Vdc.

BLOCK DIAGRAM

MECHANICAL SPECIFICATION

ENCLOSURE: HERMETICALLY SEALED DIP CAN - COLD ROLLED STEEL NICKEL PLATED MATERIAL HEADER - COLD ROLLED STEEL NICKEL PLATED PINS - COPPER CORE

Series LD00KQ

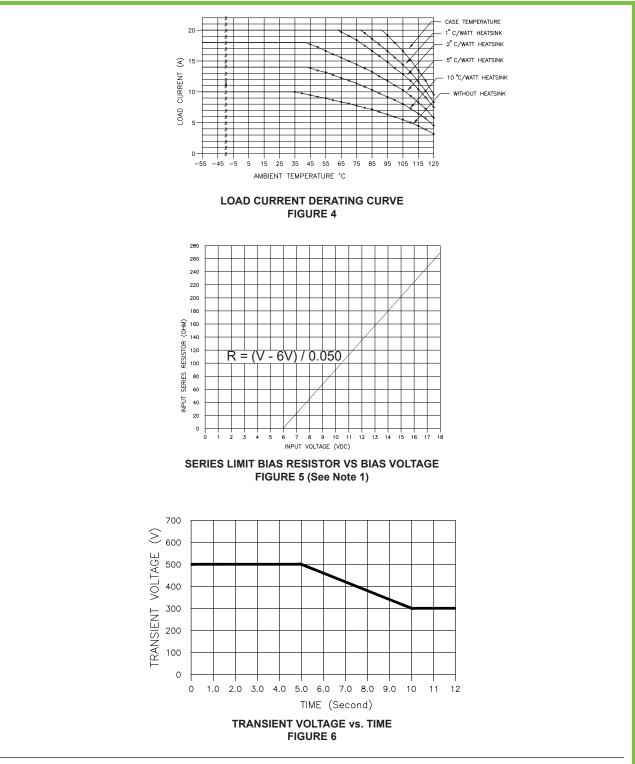

20A, 270Vdc, Optically Isolated NEW Silicon Carbide DC Solid-State Relay

lin

OUTPUT (LOAD) SPECIFICATIONS							
(See Note 2)	Min	Тур	Max	Units			
Load Current without heatsink (Figure	e 3)		10	Adc			
Load Current with heatsink (Figure 3)			20	Adc			
Leakage Current @ V _{LOAD} = 270 Vdc			10	μA			
Output Voltage Drop @ 20A			0.5	Vdc			
Continuous Operating Load Volta	ge		270	Vdc			
Transient Blocking Voltage			500	Vdc			
ON Resistance			0.025	Ohm			
Turn-On Time (See Fig. 6)			7	ms			
Turn-Off Time (See Fig. 6)			2	ms			
Electrical System Spike @ 25°C			±600	Vpk			
Input to Output Capacitance			10	pF			
Dielectric Strength	1000			Vac			
Insulation Resistance @ 500 Vdc	10 ⁹			Ohm			
Output Junction Temperature			135	°C			
∅ I _{LOAD} = I _{MAX RATED}							
Thermal Resistance Junction to Ambi	ent (θ _J ,	₄)	30	°C/W			
Thermal Resistance Junction to Case	e (θ _{JC})		5	°C/W			

ENVIRONMENTAL SPECIFICATIONS

Min	Тур	Мах	Units
-55		+125	°C
-55		+125	°C
10		3000	Hz
		5000	g
		1500	g
	55 55	-55 -55	-55 +125 -55 +125 10 3000 5000



(See Note 1)

Series LD00KQ

20A, 270Vdc, Optically Isolated NEW Silicon Carbide DC Solid-State Relay

NOTES:

1. For bias voltages above 6V, a series resistor is required. Use the standard resistor value equal to or less than the value found in Figure 4.

2. The rated input voltage is 5V for all tests unless otherwise specified.

3. Inductive loads should be diode suppressed. Input transitions should be ≤ 1 ms duration and the input drive should be a bounce-less contact type.

4. Contact factory for higher voltage relays.