

October 9, 2007

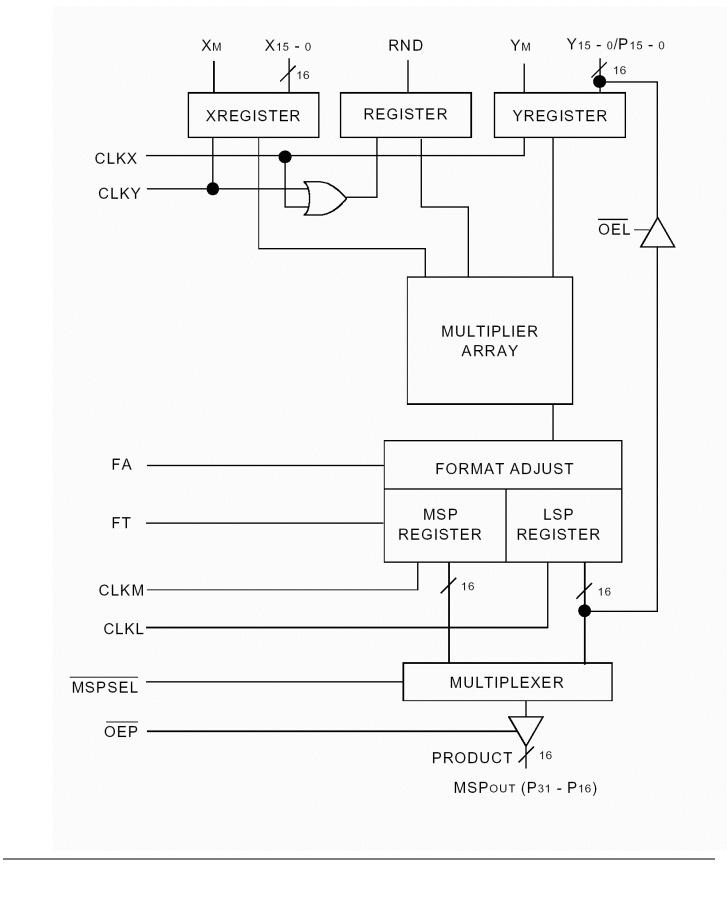
QP7216L – CMOS 16 x 16 Multiplier

General Description

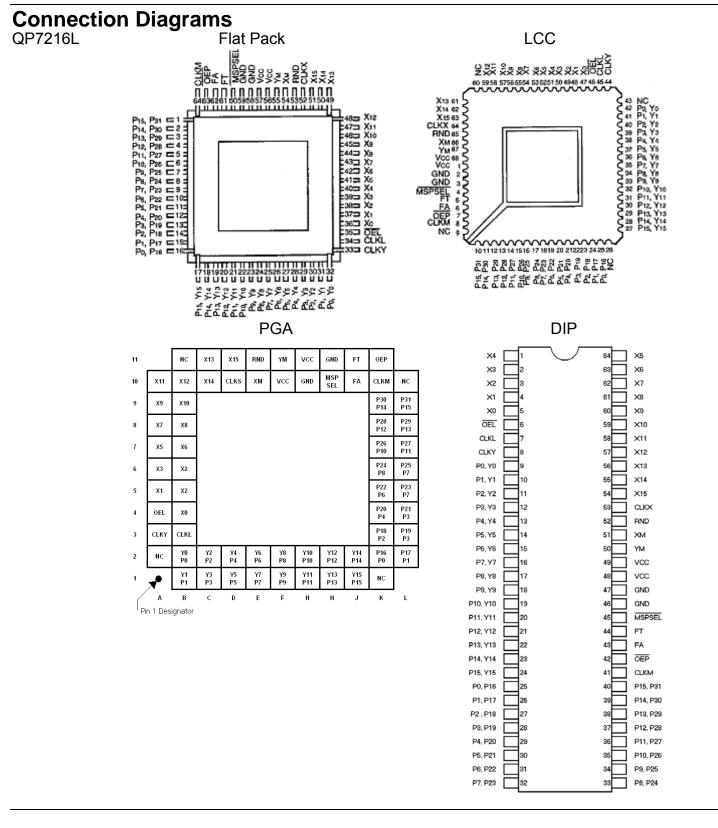
The QP7216L is a high-speed, low-power 16 x 16-bit multiplier, ideal for fast, real time digital signal processing applications. Utilization of a modified Booths algorithm and our high-performance, submicron CMOS technology, has achieved speeds comparable to bipolar (20ns max.), at 1/10 the power consumption.

The QP7216L is ideal for applications requiring high-speed multiplication such as fast Fourier transform analysis, digital filtering, graphic display systems, speech synthesis and recognition and in any system requirement where multiplication speeds of a mini/microcomputer are inadequate.

All input registers, as well as LSP and MSP output registers, use the same positive edge-triggered D-type flip-flop. In the QP7216L, there are independent clocks (CLKX, CLKY, CLKM, CLKL) associated with each of these registers.


The QP7216L offers additional flexibility with the FA control and MSPSEL_{BAR} functions. The FA control formats the output for two's complement by shifting the MSP up one bit and then repeating the sign bit in the MSB of the LSP. MSPSEL_{BAR} low selects the MSP to be available at the product output port, while a high selects the LSP to be available. Keeping this pin low will ensure compatibility with the TRW MPY016H.

The QP7216L features:


- 16 x 16 parallel multiplier with double precision product.
- 16ns clocked multiply time
- Low power consumption: 120mA
- Pin and function compatible with TRW MPY016H/K, AMD29516, IDT7216 and CY7C516.
- Tri-state outputs
- Configured for easy array expansion
- User-controlled option for transparent output register mode
- Round control for rounding the MSP
- Input and output directly TTL-compatible

QP Semiconductor products are not authorized for use in any space applications. The inclusion of QP Semiconductor products in space applications implies that the space application manufacturer assumes all risk of such use and in doing so indemnifies QP Semiconductor against all charges.

Block Diagram

Pin Name	I/O	Description
X0-X15	1	Data inputs
Y0-Y15 /	I/O	Y0-Y15 are data inputs
P0-P15		P0-P15 are LSP register output, enabled when OELbar=0
P16-P31	0	Data Output (LSP or MSP)
OEL _{BAR}	I	Output enable control for LSP (least significant product). When low enables P0-P15. When high P0-P15 high-z (tri-state)
OEP _{BAR}	I	Output enable control for MSP (most significant product). When low enables P16-P31. When high P16-P31 high-z (tri-state)
XM, YM	I	Mode control for each data word. Low designates unsigned data input and high designates two's complement.
RND		"Round" control for rounding of MSP. When high, 1 is added to the most significant bit of LSP. This signal is affected by the state of the FA pin. When FA=1 and RND=1, 1 is added to the 2-15 bit (P15). When RND=1 and FA=0, 1 is added to the 2-16 bit (P14). The RND input is registered. It is clocked on the rising edge of the logical OR of CLKX and CLKY. Rounding always occurs in the positive direction, which may introduce a systematic bias.
MSPSELBAR	1	When low, MSP is output on P16-P31. When high, LSP is output on P16-P31.
FA	1	Format adjust control. When high, a full 32-bit product is selected. When low, a left shifted 31-bit product is selected with the sign bit replicated in the LSP. FA is normally high; except for certain fractional two's complement applications (see multiplier input/output formats).
FT	1	Flow through control. When high, both MSP and LSP registers are by-passed.
CLKX	1	X register clock input. Also clocks RND register.
CLKY	1	Y register clock input. Also clocks RND register.
CLKL		LSP register clock input.
CLKM	1	MSP register clock input.

Absolute Maximum Ratings Stresses above the AMR may cause permanent damage, extended operation at AMR may degrade performance and affect reliability

Condition		Units	Notes
Power Supply and Input Voltage	-0.5 to +7.0	Volts DC	
Terminal Voltage with respect to GND	-0.5 to V _{CC} +0.5	Volts	
DC Output Current	50	MA	
Storage Temperature Range	-65 to +150	°C	
Lead Temperature (soldering, 10 seconds)	+300	°C	
Junction Temperature (T _J)	+150	°C	

Recommended Operating Conditions						
Condition		Units	Notes			
Supply Voltage Range (V _{CC})	4.5 to 5.5	Volts DC				
Input or Output Voltage Range	0.0 to V_{CC}	Volts DC	/5			
Minimum High-Level Input Voltage (VIH)	2.0	Volts DC				
Maximum Low-Level Input Voltage (VIL)	0.8	Volts DC				
Maximum high level output current	-2	mA				
Maximum low level output current	8	mA				
Case Operating Range (T _c)	-0C to +70	°C /5	Commercial			
Case Operating Range (T _c)	-40C to +85	°C /5	Industrial			
Case Operating Range (T _c)	-55 to +125	°C /5	Military			

_TABLE I – ELECTRICAL PER	FORMANC	CE CHARACTERISTICS			
Test	Symbol	Conditions -55°C ≤TA≤+125°C Unless Otherwise Specified	Min	Max	Unit
_All Devices					
Input High Voltage	VIH	$V_{CC} = 4.5V$	3.0		V
Input Low Voltage	V _{IL}	$V_{CC} = 5.5V$		0.8	mA
Input Leakage Current	l _{LI}	$V_{CC} = 5.5V, V_{IN} = 0-V_{CC}$	-10.0	+10.0	mA
Output Leakage Current	I _{LO}	V_{CC} = 5.5V, OE _{BAR} =3.5V, V _{OUT} = 0 to VCC	-10.0	+10.0	μA
Operating Power Supply Current	I _{CC}	V_{CC} = 5.5V, OE _{BAR} =3.5V, f = 10MHz		+110.0	mA
Quiescent Power Supply Current	I _{CCQ1}	$V_{IN} \ge V_{IH}, V_{IN} \le V_{IL}$		+40.0	mA
Quiescent Power Supply Current	I _{CCQ2}	$V_{IN} \ge V_{CC} - 0.2V,$ $V_{IN} \le 0.2V$		+25.0	mA
Increase in Power Supply Current (above 10MHz)	I _{CC/f}	$V_{CC} = 5.5V,$ $OE_{BAR} = 3.5V$		+6.0	mA/MHz /1
Short Circuit Current /3	I _{OS}	$V_{CC} = 5.5V,$ $V_{OUT} = 0.0V$		-120	mA
Output High Voltage	V _{OH}	V _{CC} = 4.5V, I _{OH} = -2mA	2.4		V
Output Low Voltage	V _{OL}	V _{CC} = 4.5V, I _{OL} = 8 mA		0.4	V /2

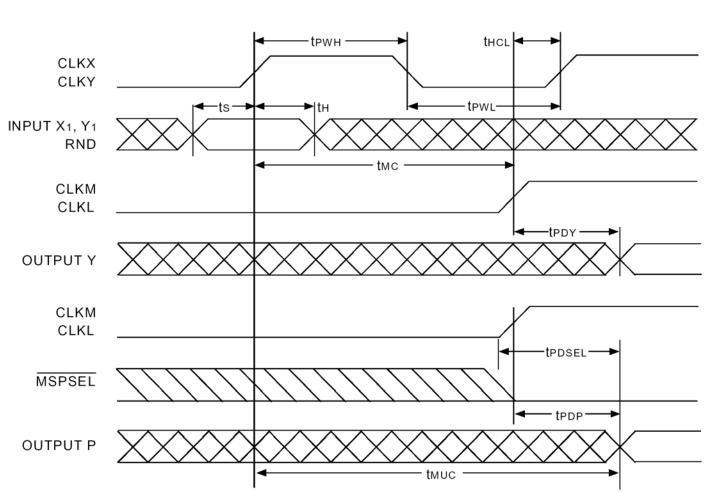
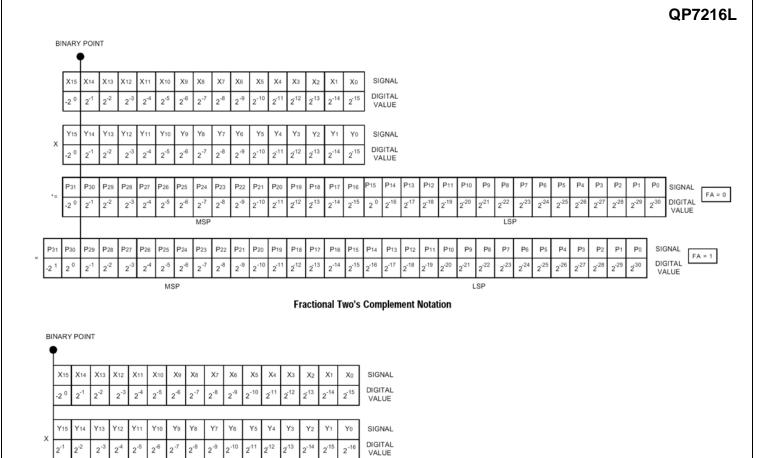

_TABLE I – ELECTRICAL PER					-
Test	Symbol	Conditions -55°C ≤TA≤+125°C	Min	Max	Unit
		Unless Otherwise Specified			
20ns					
Unclocked Multiply Time /1	MUC	V _{CC} = 5.0V		50 /4	ns
Clocked Multiply Time	MC	$V_{CC} = 5.0V$		20	ns
X, Y, RND Set-up Time	ts	$V_{CC} = 5.0V$	11		ns
X, Y, RND Hold Time	t _H	$V_{CC} = 5.0V$	1		ns
Clock Pulse Width HIGH	t _{PWH}	$V_{CC} = 5.0V$	9		ns
Clock Pulse Width LOW	t _{PWL}	$V_{CC} = 5.0V$	9		ns
MSPSEL _{BAR} to Product Out /1	t _{PDSEL}	$V_{CC} = 5.0V$		18	ns
Output Clock to P /1	t _{PDP}	$V_{CC} = 5.0V$		18	ns
Output Clock to Y /1	t _{PDY}	$V_{CC} = 5.0V$		18	ns
Tri-State Enable Time	t _{ENA}	V _{CC} = 5.0V		15	ns
Tri-State Disable Time	t _{DIS}	V _{CC} = 5.0V		15	ns
Clock LOW Hold Time /1	t _{HCL}	V _{CC} = 5.0V	0		ns
CLKX/Y Relative to CLKM/L					
_25ns			_		
Unclocked Multiply Time /1	MUC	$V_{CC} = 5.0V$		50 /4	ns
Clocked Multiply Time	MC	$V_{CC} = 5.0V$		25	ns
X, Y, RND Set-up Time	ts	$V_{CC} = 5.0V$	12		ns
X, Y, RND Hold Time	t _H	$V_{CC} = 5.0V$	2		ns
Clock Pulse Width HIGH	t _{PWH}	$V_{CC} = 5.0V$	10		ns
Clock Pulse Width LOW	t _{PWL}	$V_{CC} = 5.0V$	10		ns
MSPSEL _{BAR} to Product Out /1	t _{PDSEL}	$V_{CC} = 5.0V$		20	ns
Output Clock to P /1	t _{PDP}	$V_{CC} = 5.0V$		20	ns
Output Clock to Y /1	t _{PDY}	$V_{CC} = 5.0V$		20	ns
Tri-State Enable Time	t _{ENA}	$V_{CC} = 5.0V$		18	ns
Tri-State Disable Time	t _{DIS}	$V_{CC} = 5.0V$		18	ns
Clock LOW Hold Time /1	t _{HCL}	$V_{CC} = 5.0V$	0		ns
CLKX/Y Relative to CLKM/L					
_30ns			_		_
Unclocked Multiply Time /1	MUC	$V_{CC} = 5.0V$		50 /4	ns
Clocked Multiply Time	MC	$V_{CC} = 5.0V$		30	ns
X, Y, RND Set-up Time	ts	V _{CC} = 5.0V	12		ns
X, Y, RND Hold Time	t _H	V _{CC} = 5.0V	2		ns
Clock Pulse Width HIGH	t _{₽WH}	V _{CC} = 5.0V	10		ns
Clock Pulse Width LOW	t _{PWL}	V _{CC} = 5.0V	10		ns
MSPSEL _{BAR} to Product Out /1	t _{PDSEL}	V _{CC} = 5.0V		20	ns
Output Clock to P /1	t _{PDP}	V _{CC} = 5.0V		20	ns
Output Clock to Y /1	t _{PDY}	V _{CC} = 5.0V		20	ns
Tri-State Enable Time	t _{ENA}	V _{CC} = 5.0V		20	ns
Tri-State Disable Time	t _{DIS}	V _{CC} = 5.0V		20	ns
Clock LOW Hold Time /1	t _{HCL}	V _{CC} = 5.0V	0		ns
CLKX/Y Relative to CLKM/L					

TABLE I – ELECTRICAL PERI Test	Symbol	Conditions -55°C ≤TA≤+125°C Unless Otherwise Specified	Min	Max	Unit
42ns					
Unclocked Multiply Time /1	MUC	V _{CC} = 5.0V		65	ns
Clocked Multiply Time	MC	$V_{CC} = 5.0V$		42	ns
X, Y, RND Set-up Time	ts	V _{CC} = 5.0V	15		ns
X, Y, RND Hold Time	t _H	V _{CC} = 5.0V	3		ns
Clock Pulse Width HIGH	t _{PWH}	V _{CC} = 5.0V	15		ns
Clock Pulse Width LOW	t _{PWL}	$V_{CC} = 5.0V$	15		ns
MSPSEL _{BAR} to Product Out /1	t _{PDSEL}	$V_{CC} = 5.0V$		25	ns
Output Clock to P /1	t _{PDP}	$V_{CC} = 5.0V$		30	ns
Output Clock to Y /1	t _{PDY}	V _{CC} = 5.0V		30	ns
Tri-State Enable Time	t _{ENA}	V _{CC} = 5.0V		25	ns
Tri-State Disable Time	t _{DIS}	V _{CC} = 5.0V		25	ns
Clock LOW Hold Time /1	t _{HCL}	V _{CC} = 5.0V	0		ns
CLKX/Y Relative to CLKM/L					
_55ns			_		
Unclocked Multiply Time /1	MUC	$V_{CC} = 5.0V$		75	ns
Clocked Multiply Time	MC	$V_{CC} = 5.0V$		55	ns
X, Y, RND Set-up Time	t _s	$V_{CC} = 5.0V$	20		ns
X, Y, RND Hold Time	t _H	$V_{CC} = 5.0V$	3		ns
Clock Pulse Width HIGH	t _{PWH}	$V_{CC} = 5.0V$	25		ns
Clock Pulse Width LOW	t _{PWL}	$V_{CC} = 5.0V$	25		ns
MSPSEL _{BAR} to Product Out /1	t _{PDSEL}	$V_{CC} = 5.0V$		30	ns
Output Clock to P /1	t _{PDP}	$V_{CC} = 5.0V$		30	ns
Output Clock to Y /1	t _{PDY}	$V_{CC} = 5.0V$		30	ns
Tri-State Enable Time	t _{ENA}	$V_{CC} = 5.0V$		31	ns
Tri-State Disable Time	t _{DIS}	$V_{CC} = 5.0V$		30	ns
Clock LOW Hold Time /1 CLKX/Y Relative to CLKM/L	t _{HCL}	$V_{CC} = 5.0V$	0		ns
75ns					
Unclocked Multiply Time /1	MUC	V _{CC} = 5.0V		100	ns
Clocked Multiply Time	MC	$V_{CC} = 5.0V$		75	ns
X, Y, RND Set-up Time	t _s	$V_{CC} = 5.0V$	25	10	ns
X, Y, RND Hold Time	ts t _H	$V_{CC} = 5.0V$	3		ns
Clock Pulse Width HIGH	t _{PWH}	$V_{CC} = 5.0V$	30		ns
Clock Pulse Width LOW	t _{PWL}	$V_{CC} = 5.0V$	30		ns
MSPSEL _{BAR} to Product Out /1		$V_{CC} = 5.0V$		35	ns
Output Clock to P /1		$V_{CC} = 5.0V$		35	ns
Output Clock to Y /1	t _{PDP}	$V_{CC} = 5.0V$		40	ns
Tri-State Enable Time	t _{ENA}	$V_{CC} = 5.0V$		36	ns
Tri-State Disable Time		$V_{CC} = 5.0V$		40	ns
Clock LOW Hold Time /1 CLKX/Y Relative to CLKM/L	t _{HCL}	$V_{\rm CC} = 5.0 V$	0		ns


/1 – Guaranteed, Not Tested

/2 - 4mA for $t_{MC} > 65ns$.

- /3 Duration not to exceed 1 second, one output at a time.
- /4 Unclocked Multiply Time Slower than Original Manufacturer Device
- /5 Maximum PD, Maximum TJ Are Not to Be Exceeded

TIMING DIAGRAM

2⁻¹⁸

In this format an overflow occurs in the attempted multiplication of the two's complement number 1,000...0 with 1,000.0 yeilding an erroneous product of -1 in the fraction case and

Fractional Unsigned Magnitude Notation

2-1

2⁻²² 2⁻²³

2-20

2-21

2-24

LSP

2-27 2-28

2-30

2⁻³¹

2-25

2-32

DIGITAL VALUE

FA = 1

MANDATORY

2-26

2⁻²⁵

2⁻¹⁰

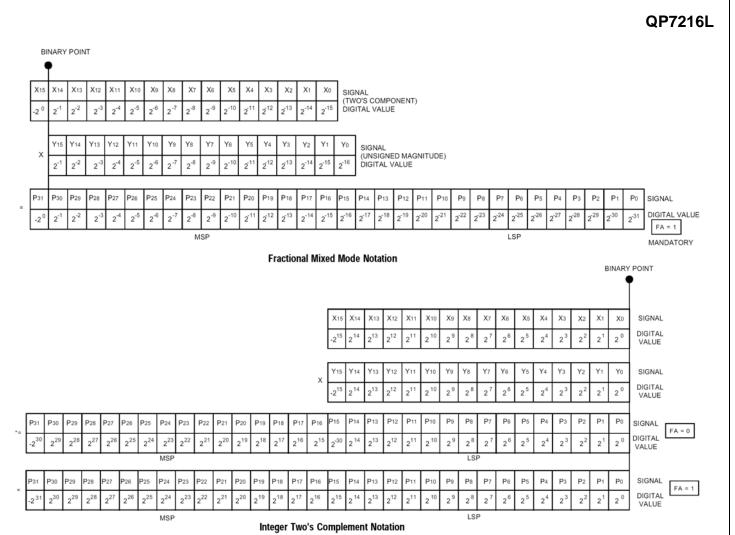
2-8 2-9

MSP

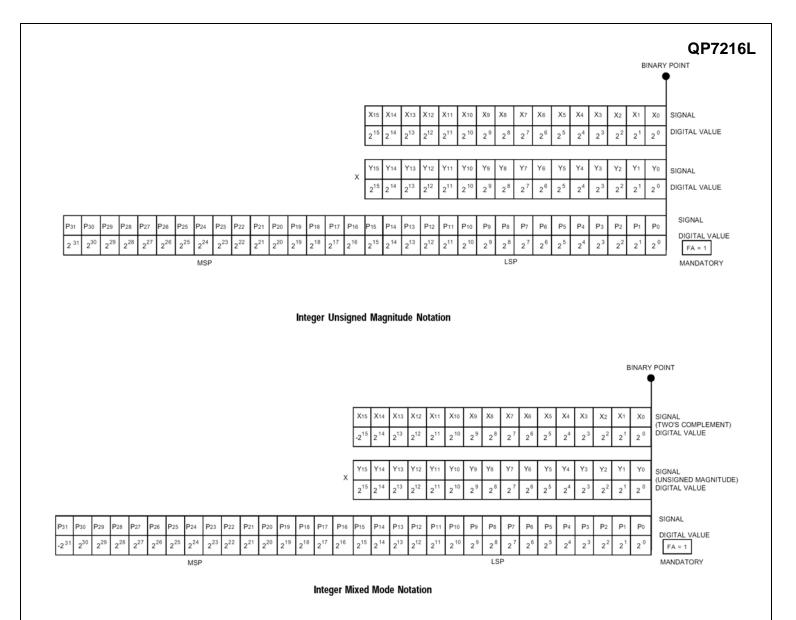
2^{*12}

2¹¹

2¹³


2⁻¹⁵ 2⁻¹⁶

2-14


P31 **P**30 **P**29 P28 P27 P26 P25 P24 P23 P22 P21 **P**20 **P**19 **P**18 P17 **P**16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 **P**3 P2 P1 **P**0 SIGNAL

2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷

-230 in the integer case.

* In this format an overflow occurs in the attempted multiplication of the two's complement number 1,000...0 with 1,000.0 yeilding an erroneous product of -1 in the fraction case and -2³⁰ in the integer case.

Ordering Information						
Temp Range	Part Number	Multiply	Package (Mil-Std-1835)	Generic		
		T _{Clock}				
Military	QP7216L20DB-MIL	20 ns	CDIP1-T64	7216L		
Military	QP7216L20LB-MIL	20 ns	CQCC1-N68	7216L		
Military	QP7216L20ZB-MIL	20 ns	CMGA15-PN 68	7216L		
Military	QP7216L20FB-MIL	20 ns	CerQuad 64	7216L		
Military	QP7216L20GB-MIL	20 ns	CMGA3-PN 68	7216L		
Military	QP7216L25DB-MIL	25 ns	CDIP1-T64	7216L		
Military	QP7216L25LB-MIL	25 ns	CQCC1-N68	7216L		
Military	QP7216L25ZB-MIL	25 ns	CMGA15-PN 68	7216L		
Military	QP7216L25FB-MIL	25 ns	CerQuad 64	7216L		
Military	QP7216L25GB-MIL	25 ns	CMGA3-PN 68	7216L		
Military	QP7216L30DB-MIL	30 ns	CDIP1-T64	7216L		
Military	QP7216L30LB-MIL	30 ns	CQCC1-N68	7216L		
Military	QP7216L30ZB-MIL	30 ns	CMGA15-PN 68	7216L		
Military	QP7216L30FB-MIL	30 ns	CerQuad 64	7216L		
Military	QP7216L30GB-MIL	30 ns	CMGA3-PN 68	7216L		

Temp Range	Part Number	Multiply T _{Clock}	Package (Mil-Std-1835)	Generic
Military	QP7216L42DB-MIL	42 ns	CDIP1-T64	7216L
Military	QP7216L42LB-MIL	42 ns	CQCC1-N68	7216L
Military	QP7216L42ZB-MIL	42 ns	CMGA15-PN 68	7216L
Military	QP7216L42FB-MIL	42 ns	CerQuad 64	7216L
Military	QP7216L42GB-MIL	42 ns	CMGA3-PN 68	7216L
Military	QP7216L55DB-MIL	55 ns	CDIP1-T64	7216L
Military	QP7216L55LB-MIL	55 ns	CQCC1-N68	7216L
Military	QP7216L55ZB-MIL	55 ns	CMGA15-PN 68	7216L
Military	QP7216L55FB-MIL	55 ns	CerQuad 64	7216L
Military	QP7216L55GB-MIL	55 ns	CMGA3-PN 68	7216L
Military	QP7216L75DB-MIL	75 ns	CDIP1-T64	7216L
Military	QP7216L75LB-MIL	75 ns	CQCC1-N68	7216L
Military	QP7216L75ZB-MIL	75 ns	CMGA15-PN 68	7216L
Military	QP7216L75FB-MIL	75 ns	CerQuad 64	7216L
Military	QP7216L75GB-MIL	75 ns	CMGA3-PN 68	7216L

QP Semiconductor supports Source Control Drawing (SCD), and custom package development for this product family.

Notes:

Package outline information and specifications are defined by Mil-Std-1835 package dimension requirements.

"-MIL" products manufactured by QP Semiconductor are compliant to the assembly, burn-in, test and quality conformance requirements of Test Methods 5004 & 5005 of Mil-Std-883 for Class B devices. This datasheet defines the electrical test requirements for the device(s).

The listed drawings, Mil-PRF-38535, Mil-Std-883 and Mil-Std-1835 are available online at http://www.dscc.dla.mil/

Additional information is available at our website http://www.qpsemi.com