

October 9, 2007

QP111 Voltage Comparator / QP2111 Dual Voltage Comparator

General Description

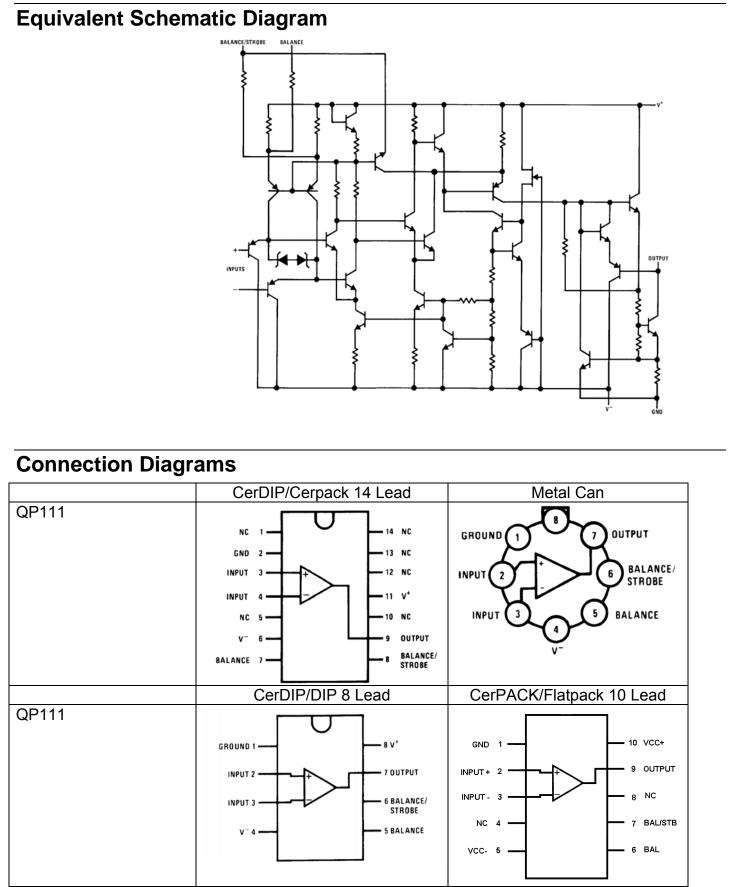
The QP2111 dual voltage comparator is a single monolithic die with two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in closer thermal tracking, lower weight, reduced insertion cost and smaller size than two individual die. The QP Semiconductor product is improved over other manufacturer's devices of the same device type because thermal tracking is improved again over their products that are based on using two separate die in a single package.

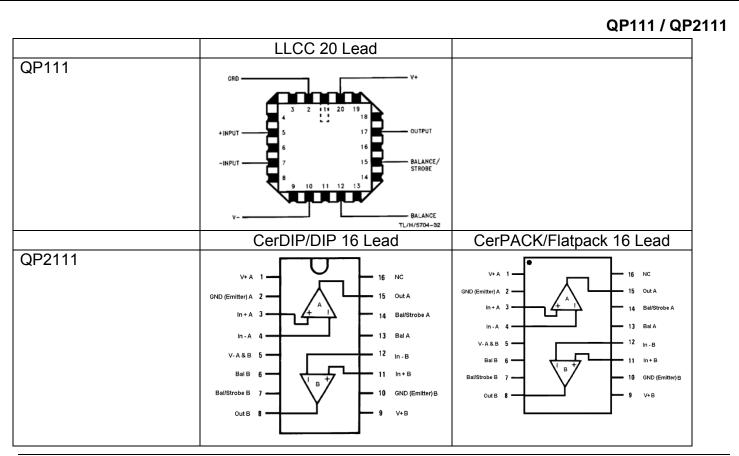
The QP2111/QP111 are industry standard LM111 voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages. The devices operate from standard ±15V op amp supplies down to the single 5V supply used for IC logic.

Their outputs are compatible with RTL, DTL and TTL as well as CMOS/MOS circuits. And, they can drive lamps or relays, switching voltages up to 50V at currents as high as 50 mA.

Both the inputs and the outputs of the QP2111/QP111 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. The family is also much less prone to spurious oscillations than either the LM106 or LM710.

The QP111 has the same pin configuration as the LM111, LM106 and LM710. The QP2111 has the same pin configuration as the LH2111/LM2111.


The QP2111/QP111 are specified for operation over the -55°C to +125°C military temperature range.


The QP2111/QP111 feature:

- Wide operating supply range: ±15V to a single +5V
- Input current: 150 nA maximum over temperature
- Offset current: 20 nA maximum over temperature
- Wide Differential input voltage range: ±30V
- Power consumption: 135 mW at ±15V
- High output drive: 50 mA, 50V

The family is constructed using an advanced bipolar process.

QP Semiconductor products are not authorized for use in any space applications. The inclusion of QP Semiconductor products in space applications implies that the space application manufacturer assumes all risk of such use and in doing so indemnifies QP Semiconductor against all charges.

Absolute Maximum Ratings

Stresses above the AMR may cause permanent damage, extended operation at AMR may degrade performance and affect reliability

Condition		Units	Notes
Total Supply Voltage	36	Volts	
Positive Supply Voltage	+30	Volts	
Negative Supply Voltage	-30	Volts	
Output to Negative Supply Voltage	50	Volts	
Ground to Negative Supply Voltage	30	Volts	
Differential Input Voltage	±30	Volts	
Input Voltage	±15	Volts	/1
Output Sink Current	50	mA	
Output Short Circuit Duration	10	Seconds	
Maximum Strobe Current	10	mA	
Voltage at Strobe Pin	V+ -5	Volts	
Storage Temperature Range	-65 to +150	°C	
Lead Temperature (soldering, 10 seconds)	+260	°C	
Junction Temperature (T _J)	+175	°C	/2

				QPTTT	QP211
Recommended Operating Cor	nditions				
Condition			Units	N	otes
Supply Voltage Range		4.5 to 30		/3	
Case Operating Range (T _c)		-55C to +125	ъС	/2	2
 Notes: Apply to Absolute Maximum, Recomm 1 – This rating applies for ±15 su The negative input voltage lin supply, whichever is less. 2 – Maximum T_J is not to be excess 3 – Absolute Maximum Condition limitations. 4 – These specifications apply fo unless otherwise stated. The supply voltage from a single state of the supply voltage from a supply voltage from a single state of the supply voltage from a supp	pplies. The nit is equal eeded. as are not to offset volta $\overline{5}V$ supply ut t currents g vith a 1 mA ts of voltage is for a 100 ange of curr to not short lly subtraction adding it to v which are p V_{CC} . $V_{IC} = 0V, \pm V$	positive input voltage limit to the negative supply voltage be exceeded relative to to $c_{c} = \pm 15V$ and Ground pin at loge, offset current and bias up to $\pm 15V$ supplies. iven are the maximum valu- load. These parameters d e gain and R _s . mV input step with 5 mV corrent that must be drawn fro the strobe pin to ground; if ang the common mode volta V_{IN} . V_{IC} can be calculated V_{IN} . V_{IC} can be calculated $V_{IC} = -\left\lfloor \frac{(+V_{CC}) + (-V_{CC})}{2} \right\rfloor$ -	is 30V above t age, or 30V be otal supply volta ground, and – current specific ues required to efine an error to overdrive. In the strobe p the strobe p	the negative low the position age and inpu- $55^{\circ}C \ge T_A \le +1$ cations appli- drive the out band and tak in to ensure rent driven a supply volta llowing form	supply. tive ut 25°C, y for any tput te into the t 3 to 5 ge (+V _{cc} ula: g BAL
				Mari	l lucit
Test	Symbol	Conditions /10 -55°C ≤T _A ≤+125°C	Min	Max	Unit
		Unless Otherwise Specifie	d		
nput Offset Voltage	V _{IO}	R_{S} =50 Ω , V_{IC} =0V, V_{supp}	_{ly} -3.0	+3.0	mV
		13V & -14.5V T _A =25°C			
		/8	-4.0	+4.0	mV
		T_{A} = -55°C or 125°			ļ
		$R_{S}=50\Omega$, $V_{IC}=0V$, V_{supp}	,	+3.0	mV
		$2.5V \& -2.5V T_A=25^{\circ}$			
		/8 T _A = -55°C or 125°	-4.0	+4.0	mV
Daised Input Offect Valtage /2	V			+3.0	m\/
Raised Input Offset Voltage /9	$V_{IO(R)}$	R _S =50Ω, V _{IC} =0V, V _{supp} 13V & -14.5V T _A =25°C	,	+3.0	mV
		$13^{\circ} \alpha - 14.5^{\circ} 1_{A} - 25^{\circ} \alpha$		1 A E	

/8 V_{BAL}=V_{BAL/STB}=+V_{CC} T_A= -55°C or 125°C

-4.5

mV

+4.5

TABLE I – ELECTRICAL PERF	ORMANC	E CHARACTERISTICS			
Test	Symbol	Conditions /10 -55°C ≤T _A ≤+125°C Unless Otherwise Specified	Min	Max	Unit
Input Offset Voltage Temperature Coefficient	$\Delta V_{IO} / \Delta T$	R _s =50Ω	-25.0	+25.0	µV/⁰C
Input Offset Current	I _{IO}	R _S =50KΩ, V _{IC} =0V, V _{supply} 13V & -14.5V T _A =25°C & 125°C	-10.0	+10.0	nA
		/8 T _A = –55°C	-20.0	+20.0	nA
Raised Input Offset Current /9	I _{IO(R)}	R _S =50KΩ, V _{IC} =0V, V _{supply} 13V & -14.5V T _A =25°C & 125°C	-25.0	+25.0	nA
		/8 $V_{BAL}=V_{BAL/STB}=+V_{CC}$ $T_A=-55^{\circ}C$	-50.0	+50.0	nA
Input Offset Voltage	ΔΙ _{ΙΟ} /ΔΤ	R _S =50Ω T _A =25 / 125°C	-100.0	+100.0	pA/ºC
Temperature Coefficient		T _A =25 / -55°C	-200.0	+200.0	pA/ºC
Input Bias Current	+l _{IB}	R _S =50KΩ, V _{IC} =0V T _A =25°C & 125°C	-100.0	+0.1	nA
		T _A = -55°C	-150.0	+0.1	nA
		R _S =50KΩ, V _{IC} = 13V & -14.5V T _A =25°C & 125°C	-150.0	+0.1	nA
		T _A = -55°C	-200.0	+0.1	nA
Input Bias Current	-I _{IB}	R _S =50KΩ, V _{IC} =0V T _A =25°C & 125°C	-100.0	+0.1	nA
		T _A = -55°C	-150.0	+0.1	nA
		R _S =50KΩ, V _{IC} = 13V & -14.5V T _A =25°C & 125°C	-150.0	+0.1	nA
		T _A = -55°C	-200.0	+0.1	nA
Collector Output Voltage (Strobed)	V _{O(STB)}	R _S =50Ω, I _{STB} = -3.0mA	+14.0		V
Common Mode Rejection Ratio	CMRR	R _S =50Ω, V _{IC} = 13V & -14.5V	+80.0		dB
Output Leakage Current	I _{CEX}	$\pm V_{CC}$ = $\pm 18V$ T _A =25°C	-1.0	+10.0	nA
		V _{OUT} = 32V T _A =125°C	-1.0	+500.0	nA
Input Leakage Current	I _{I1}	±V _{CC} = ±18V V _{ID} = +29V	-5.0	+500.0	nA
	I _{I2}	$\pm V_{CC}$ = ±18V V _{ID} = -29V	-5.0	+500.0	nA

TABLE I – ELECTRICAL PERI		E CHARACTERISTICS			
Test	Symbol	Conditions /10 -55°C ≤T _A ≤+125°C Unless Otherwise Specified	Min	Max	Unit
Positive Supply Current	+I _{CC}	T _A = -55°C		+7.0	mA
(Limit is for one comparator.)		T _A = 25°C		+6.0	mA
		T _A = 125°C		+6.0	mA
Negative Supply Current	-I _{CC}	T _A = -55°C	-6.0		mA
(Limit is for one comparator.)		T _A = 25°C	-5.0		mA
		T _A = 125°C	-5.0		mA
Short Circuit Current	I _{OS}	T _A = -55°C		-250	mA
Duration not to exceed 10ms, one output at a time		T _A = 25°C		-200	mA
		T _A = 125°C		-150	mA
Adjustment for	V _{IO(ADJ)+}	R_{S} =50 Ω , T_{A} = 25°C	+5.0		mV
Input Offset Voltage	V _{IO(ADJ)} -	R_{S} =50Ω, T_{A} = 25°C		-5.0	mV
Low Level Output Voltage	V _{OL1} V _{OL2}	$+V_{CC}$ =+4.5V, $-V_{CC}$ =0V, V _{IC} = -1.75V, +0.75V, V _{ID} =-6.0mV, I _O = 8mA		0.4 0.4	V V
	V _{OL3} V _{OL4}	$\pm V_{CC} = \pm 15V,$ V _{IC} = 13V, -14V, V _{ID} =-5.0mV, I _O = 50mA		1.5 1.5	V V
Voltage Gain	$\pm A_{VE}$	R_L = 600 Ω , T_A = 25°C	+10.0		V/mV
(emitter follower output)		T _A = -55°C, +125°C	+8.0		V/mV
Response Time, Low to High Level Collector Output	t _{RLHC}	T _A = 25°C, -55°C V _{0D} = -5mV, C _L =50pF,		300	ns
		V _{IN} =100mV T _A =125°C		640	ns
Response Time, High to Low Level Collector Output	t _{RHLC}	T _A = 25°C, -55°C V _{0D} = +5mV, C _L =50pF,		300	ns
		V _{IN} =100mV T _A =125°C		500	ns

Ordering Information				
Part Number		Package (Mil-Std-1835)	Generic	
5962-86877012A		CQCC1-N20 (LLCC)	QP111	
5962-86877012C	*	CQCC1-N20 (LLCC)	QP111	
5962-8687701GA		MACY1-X8 (Metal CAN)	QP111	
5962-8687701PA		CDIP2-T8 (CERDIP)	QP111	
5962-8687701PC	*	GDIP1-T8 (Dual-in-Line)	QP111	
5962-8687701Q2A		CQCC1-N20 (LLCC)	QP111	
5962-8687701Q2C	*	CQCC1-N20 (LLCC)	QP111	
5962-8687701QGA		MACY1-X8 (Metal CAN)	QP111	

Part Number		Package (Mil-Std-1835)	Generic
5962-8687701QPA		CDIP2-T8 (CERDIP)	QP111
5962-8687701QPC	*	GDIP1-T8 (Dual-in-Line)	QP111
5962-8687701QZA		GDFP1-G10 (Gull Wing Flatpack)	QP111
5962-8687701QZC	*	GDFP1-G10 (Gull Wing Flatpack)	QP111
JM38510-10304B2A		CQCC1-N20 (LLCC)	QP111
JM38510-10304B2C	*	CQCC1-N20 (LLCC)	QP111
JM38510-10304BAA		CDFP6-F14 (FLATPACK)	QP111
JM38510-10304BAC	*	GDFP5-F14 (FLATPACK)	QP111
JM38510-10304BCA		CDIP2-T14 (CERDIP)	QP111
JM38510-10304BCC	*	GDIP1-T14 (Dual-in-Line)	QP111
JM38510-10304BGA		MACY1-X8 (Metal CAN)	QP111
JM38510-10304BHA		CDFP2-F10 (FLATPACK)	QP111
JM38510-10304BHC	*	GDFP1-F10 (FLATPACK)	QP111
JM38510-10304BPA		CDIP2-T8 (CERDIP)	QP111
JM38510-10304BPC	*	GDIP1-T8 (Dual-in-Line)	QP111
JM38510-10305BEA		CDIP2-T16 (CERDIP)	QP2111
JM38510-10305BEC	*	GDIP1-T16 (Dual-in-Line)	QP2111
JM38510-10305BFA		CDFP3-F16 (CERPACK)	QP2111
JM38510-10305BFC	*	GDFP2-F16 (FLATPACK)	QP2111

* denotes Lead Free Lead Finish

In addition to those products listed above, QP Semiconductor supports Industrial Temperature Range, Source Control Drawing (SCD), and custom package development for this product family.

Notes:

Package outline information and specifications are defined by Mil-Std-1835 package dimension requirements.

Products manufactured by QP Semiconductor are compliant to the assembly, burn-in, test and quality conformance requirements of Test Methods 5004 & 5005 of Mil-Std-883 for Class B or Q devices as appropriate. The appropriate DSCC Detail Specifications define the electrical test requirements for each device.

The listed drawings, Mil-PRF-38535, Mil-Std-883 and Mil-Std-1835 are available online at http://www.dscc.dla.mil/

Additional information is available at our website http://www.qpsemi.com

Application Hints

CIRCUIT TECHNIQUES FOR AVOIDING OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high-speed comparator such as the QP111 is used with fast input signals and low source impedances, the output response will normally be fast and stable, assuming that the power supplies have been bypassed (with 0.1 μ F disc capacitors), and that the output signal is routed well away from the inputs and also away from Balance and Balance/Strobe pins. However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high (1 k Ω to 100 k Ω), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the QP111. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 1 below.

1. The trim pins (Balance and Balance/Strobe) act as unwanted auxiliary inputs. If these pins are not connected to a trim-pot, they should be shorted together. If they are connected to a trim-pot, a 0.01 μ F capacitor C1 between Balance and Balance/Strobe will minimize the susceptibility to AC coupling. A smaller capacitor is used if Balance is used for positive feedback as in Figure 1.

2. Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor C2 is connected directly across the input pins.

3. When the signal source is applied through a resistive network, RS, it is usually advantageous to choose an RS' of substantially the same value, both for DC and for dynamic (AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used successfully in comparator input circuitry. Inductive wire wound resistors are not suitable.

4. When comparator circuits use input resistors (e.g. Summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words there should be very little lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if RS=10 k Ω , as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to damp. Twisting these input leads tightly is the only (second best) alternative to placing resistors close to the comparator.

5. Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a ground plane under the QP111 circuitry, for example, one side of a double-layer circuit card. Ground foil (or, positive supply or negative supply foil) should extend between the output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to guard against capacitive coupling from any high-level signals (such as the output). If Balance and Balance/Strobe are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located, at most, a few inches away from the QP111, and the 0.01 μ F capacitor should be installed. If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between Balance/Strobe and the Output. The power supply bypass capacitors should be located within a couple inches of the QP111. It is better if the power-supply bypass capacitors are located immediately adjacent to the comparator.

6. It is standard procedure to use Hysteresis (positive feedback) around a comparator, to prevent oscillation, and to avoid excessive noise on the output because the comparator is a good amplifier for its own noise. In the circuit of Figure 2, the feedback from the output to the positive input will cause about 3 mV of Hysteresis. However, if RS is larger than 100 Ω , such as 50 k Ω , it would not be reasonable to simply increase the value of the positive feedback resistor above 510 k Ω . The circuit of Figure 3 could be used, but it is rather awkward. See the notes in paragraph 7 below.

7. When both inputs of the QP111 are connected to active signals, or if a high-impedance signal is driving the positive input of the QP111 so that positive feedback would be disruptive, the circuit of Figure 1 is ideal. The positive feedback is to Balance pin (one of the offset adjustment pins). It is sufficient to cause 1 to 2 mV Hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz. The positive-feedback signal across the 82W resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at the Balance pin, so this feedback does not add to the VOS of the comparator. As much as 8 mV of VOS can be trimmed out, using a 5 k Ω pot and 3 k Ω resistor as shown.

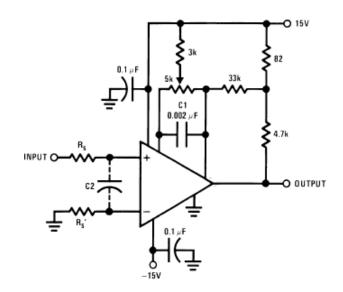


FIGURE 1. Improved Positive Feedback

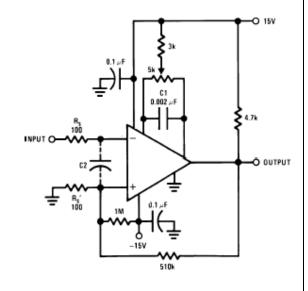


FIGURE 2. Conventional Positive Feedback

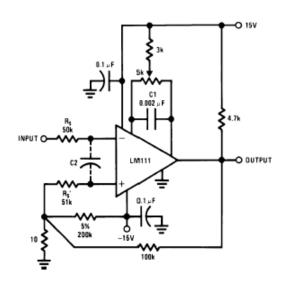


FIGURE 3. Positive Feedback with High Source Resistance