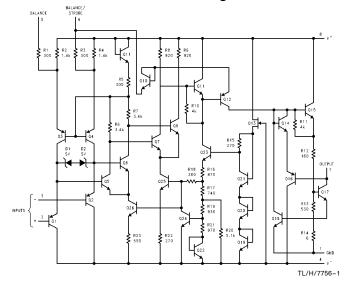
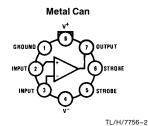
LM106/LM306 Voltage Comparator

General Description

The LM106 series are high-speed voltage comparators designed to accurately detect low-level analog signals and drive a digital load. They are equivalent to an LM710, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24V at currents as high as 10 mA.


The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 series. They can also be operated from any negative supply voltage between -3V and -12V with little effect on performance.


The LM106 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LM306 is specified for operation over 0°C to $+70^{\circ}$ C temperature range.

Features

- Improved accuracy
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver
- Plug-in replacement for the LM710
- 40 ns maximum response time

Schematic and Connection Diagrams

TL/H/775

Top View Note: Pin 4 connected to case

Order Number LM106H, LM106H/883† or LM306H See NS Package Number H08A

†Available per SMD# 8003701

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)

 Positive Supply Voltage
 15V

 Negative Supply Voltage
 -15V

 Output Voltage
 24V

 Output to Negative Supply Voltage
 30V

 Differential Input Voltage
 ±5V

 Input Voltage
 ±7V

 Power Dissipation (Note 1)
 600 mW

 Output Short Circuit Duration
 10 seconds

 Operating Temperature Range
 TMIN TMAX

 LM106
 -55°C to +125°C

 LM306
 0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

 Lead Temperature (Soldering, 10 sec.)
 300°C

ESD rating to be determined.

Electrical Characteristics (Note 2)

Parameter	Conditions	LM106			LM306			Units	
raiailletei	Conditions	Min	Тур	Max	Min	Тур	Max	Jillis	
Input Offset Voltage	(Note 3)		0.5	2.0		1.6	5.0	mV	
Input Offset Current	(Note 3)		0.7	3.0		1.8	5.0	μΑ	
Input Bias Current			10	20		16	25	μΑ	
Response Time	$R_L = 390\Omega$ to 5V $C_L = 15$ pF, (Note 4)		28	40		28	40	ns	
Saturation Voltage	$ \begin{array}{c} V_{IN} \leq -5 \text{ mV}, I_{OUT} = 100 \text{ mA} \\ V_{IN} \leq -7 \text{ mV}, I_{OUT} = 100 \text{ mA} \end{array} $		1.0	1.5		0.8	2.0	V V	
Output Leakage Current	$ \begin{array}{c} V_{\text{IN}} \geq 5 \text{ mV}, 8V \leq V_{\text{OUT}} \leq 24V \\ V_{\text{IN}} \geq 7 \text{ mV}, 8V \leq V_{\text{OUT}} \leq 24V \end{array} $		0.02	1.0		0.02	2.0	μA μA	
THE FOLLOWING SPECIFICATION	S APPLY FOR $T_{MIN} \le T_{A} \le T_{MAX}$	(Note 5	5)						
Input Offset Voltage	(Note 3)			3.0			6.5	mV	
Average Temperature Coefficient of Input Offset Voltage			3.0	10		5	20	μV/°C	
Input Offset Current	$\begin{aligned} & T_L \leq T_A \leq 25^\circ C, \text{(Note 3)} \\ & 25^\circ C \leq T_A \leq T_H \end{aligned}$		1.8 0.25	7.0 3.0		2.4	7.5 5.0	μA μA	
Average Temperature Coefficient of Input Offset Current	$25^{\circ}C \leq T_{A} \leq T_{H}$ $T_{L} \leq T_{A} \leq 25^{\circ}C$		5.0 15	25 75		15 24	50 100	nA/°C nA/°C	
Input Bias Current	$\begin{aligned} &T_L \leq T_A \leq 25^\circ C \\ &25^\circ C \leq T_A \leq T_H \end{aligned}$			45 20		25	40 25	μA μA	
Input Voltage Range	-7V ≥ V ⁻ ≥ -12V	±5.0			±5.0			V	
Differential Input Voltage Range		±5.0			±5.0			V	
Saturation Voltage	$V_{IN} \le -5$ mV, $I_{OUT} = 50$ mA $V_{IN} \le -8$ mV For LM306			1.0			1.0	V	
Saturation Voltage	$V_{IN} \le -5$ mV, $I_{OUT} = 16$ mA $V_{IN} \le -8$ mV For LM306			0.4			0.4	٧	
Positive Output Level	$V_{IN} \geq 5$ mV, $I_{OUT} = -400 \mu A$ $V_{IN} \geq 8$ mV For LM306	2.5		5.5	2.5		5.5	٧	
Output Leakage Current	$\begin{aligned} &V_{\text{IN}} \geq 5 \text{ mV}, 8V \leq V_{\text{OUT}} \leq 24V \\ &V_{\text{IN}} \geq 8 \text{ mV For LM306} \\ &T_{\text{L}} \leq T_{\text{A}} \leq 25^{\circ}\text{C} \\ &25^{\circ}\text{C} < T_{\text{A}} \leq T_{\text{H}} \end{aligned}$			1.0			2.0	μΑ	
Strobe Current	V _{STROBE} = 0.4V		-1.7	-3.2		-1.7	-3.2	mA	
			L		L				

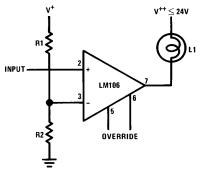
Electrical Characteristics (Note 2) (Continued)

Parameter	Conditions	LM106				11-24-		
		Min	Тур	Max	Min	Тур	Max	Units
Strobe "ON" Voltage		0.9	1.4		0.9	1.4		V
Strobe "OFF" Voltage	$I_{SINK} \le 16 \text{ mA}$		1.4	2.2		1.4	2.2	V
Positive Supply Current	$V_{IN} = -5 \text{ mV}$ $V_{IN} = -8 \text{ mV for LM306}$		5.5	10		5.5	10	mA
Negative Supply Current			-1.5	-3.6		-1.5	-3.6	mA

Note 1: The maximum junction temperature of LM106 is 150°C, LM306 is 85°C. For operating at elevated temperatures, devices must be derated based on a thermal resistance of 170°C/W, junction to ambient, or 23°C/W, junction to case.

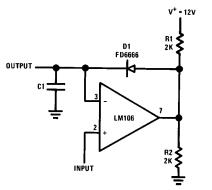
Note 2: These specifications apply for $-3V \ge V^- \ge -12V$, $V^+ = 12V$ and $T_A = 25^{\circ}C$ unless otherwise specified. All currents into device pins are considered positive

Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5V or up to 4.4V (0.5V or up to 4.8V for the LM306). Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, specified supply voltage variations, and common mode voltage variations.

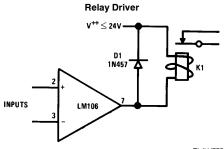

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

Note 5: All currents into device pins are considered positive.

Note 6: Refer to RETS106X for LM106 military specifications.

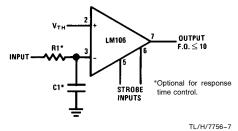

Typical Applications

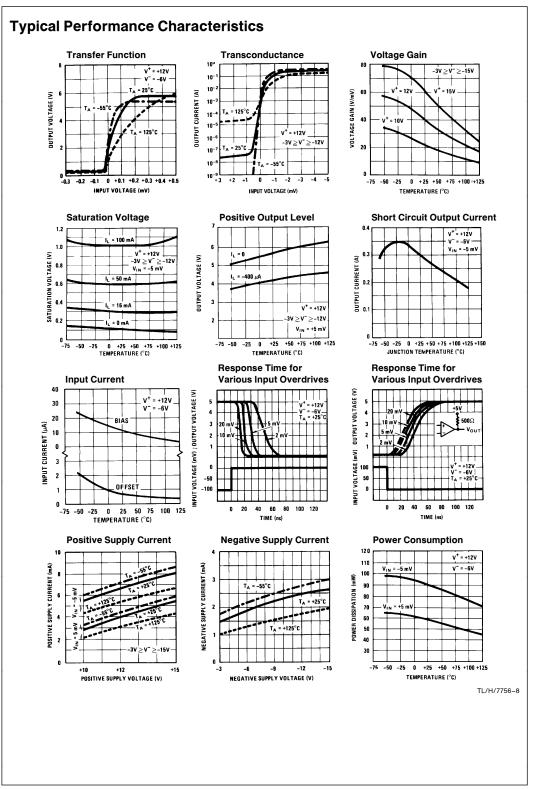
Level Detector and Lamp Driver

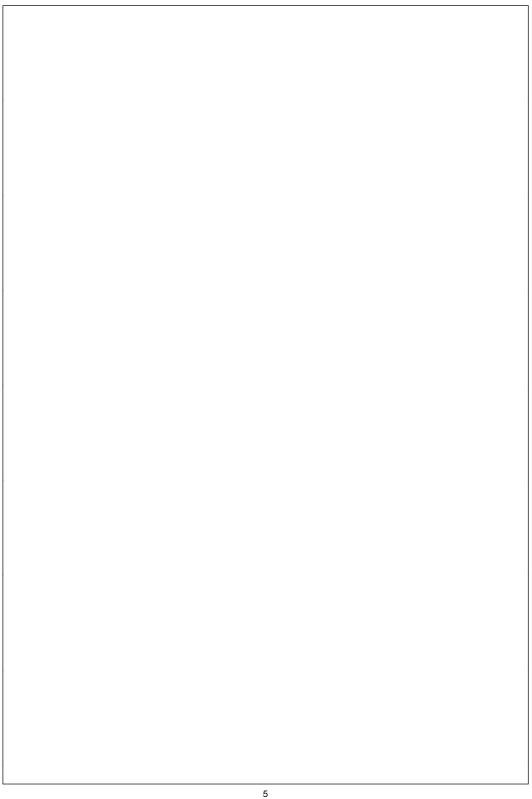


TL/H/7756-4

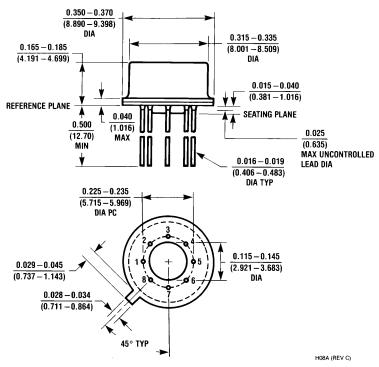
Fast Response Peak Detector




TL/H/7756-5



TL/H/7756-6


Adjustable Threshold Line Receiver

Physical Dimensions inches (millimeters)

Metal Can Package (H) Order Number LM106H, LM106H/883 or LM306H NS Package Number H08A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.