

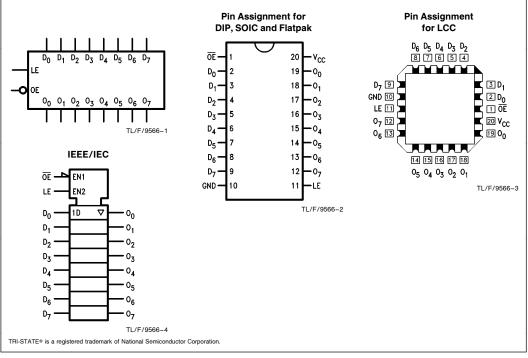
54F/74F573 Octal D-Type Latch with TRI-STATE® Outputs

General Description

The 'F573 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable $(\overline{\text{OE}})$ inputs.

This device is functionally identical to the 'F373 but has different pinouts.

- Features
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessorsFunctionally identical to 'F373
- TRI-STATE outputs for bus interfacing
- Guaranteed 4000V minimum ESD protection


Commercial	Military	Package Number	Package Description
74F573PC		N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
	54F573DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line
74F573SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F573SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F573FM (Note 2)	W20A	20-Lead Cerpak
	54F573LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13'' reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9566

RRD-B30M115/Printed in U. S. A.

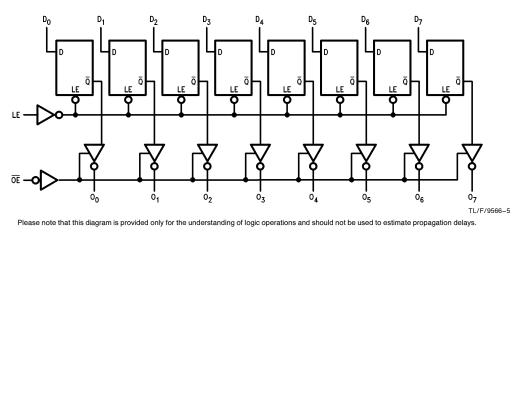
August 1995

			54F/74F
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}
D ₀ -D ₇	Data Inputs	1.0/1.0	20 µA/−0.6 mA
LE	Latch Enable Input (Active HIGH)	1.0/1.0	20 µA/−0.6 mA
ŌĒ	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA
O ₀ -O ₇	TRI-STATE Latch Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)

Functional Description

The 'F573 contains eight D-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfer with entering new data into the latches.

Function Table


	Inputs		Outputs
ŌĒ	LE	D	0
L	Н	Н	н
L	Н	L	L
L	L	х	O ₀
Н	Х	Х	Z

H = HIGH Voltage Level

L = LOW Voltage Level

 $\begin{array}{l} X = \text{Immaterial} \\ O_0 = \text{Value stored from previous clock cycle} \end{array} \\ \end{array}$

Logic Diagram

Absolute Maximum Ratings (Note 1)

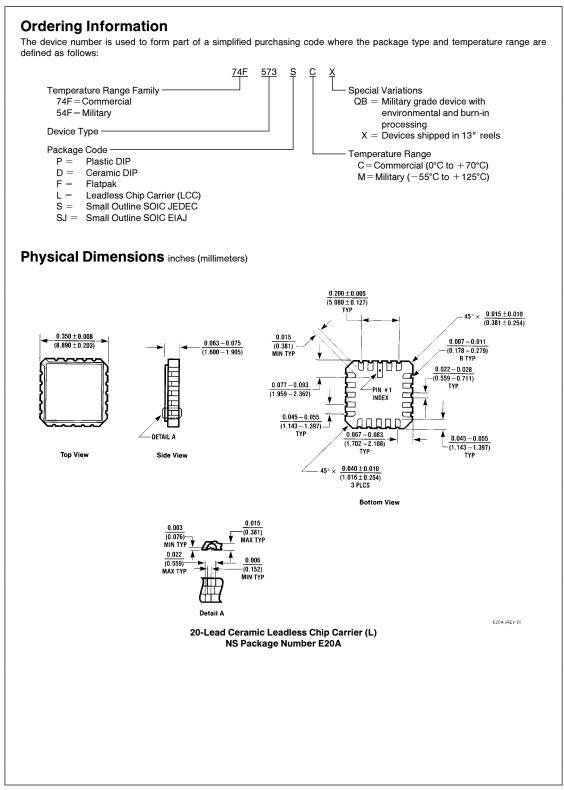
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

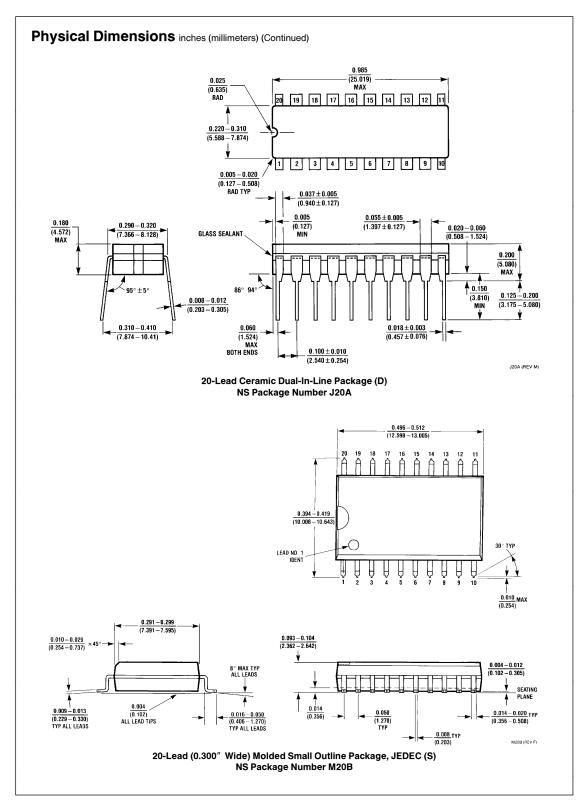
Storage Temperature	-65°C to +150°C	
Ambient Temperature under Bias	-55°C to +125°C	
Junction Temperature under Bias	-55°C to +175°C	
Plastic	-55°C to +150°C	
V _{CC} Pin Potential to		
Ground Pin	-0.5V to +7.0V	
Input Voltage (Note 2)	-0.5V to $+7.0V$	
Input Current (Note 2)	-30 mA to $+5.0$ mA	
Voltage Applied to Output		
in HIGH State (with $V_{CC} = 0V$)		
Standard Output	- 0.5V to V _{CC}	
TRI-STATE Output	-0.5V to $+5.5V$	
Current Applied to Output		
in LOW State (Max)	twice the rated I _{OL} (mA)	
ESD Last Passing Voltage (Min)	4000V	

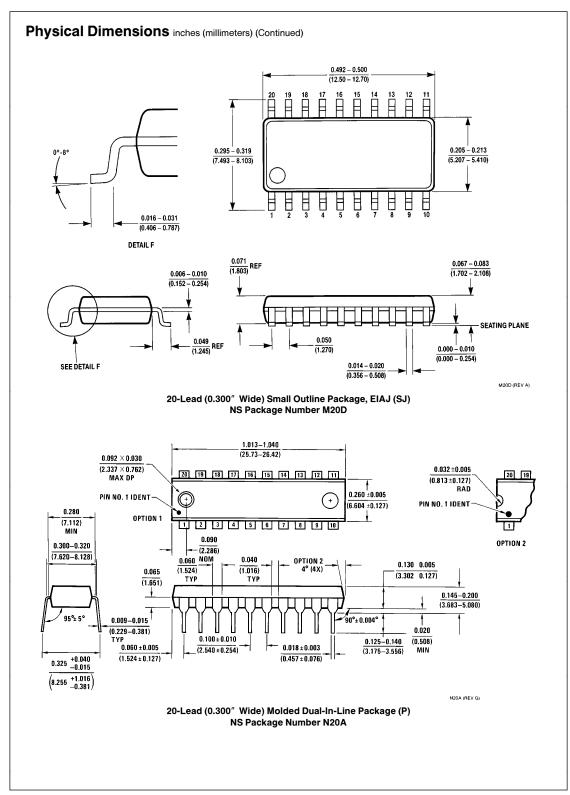
Recommended Operating Conditions

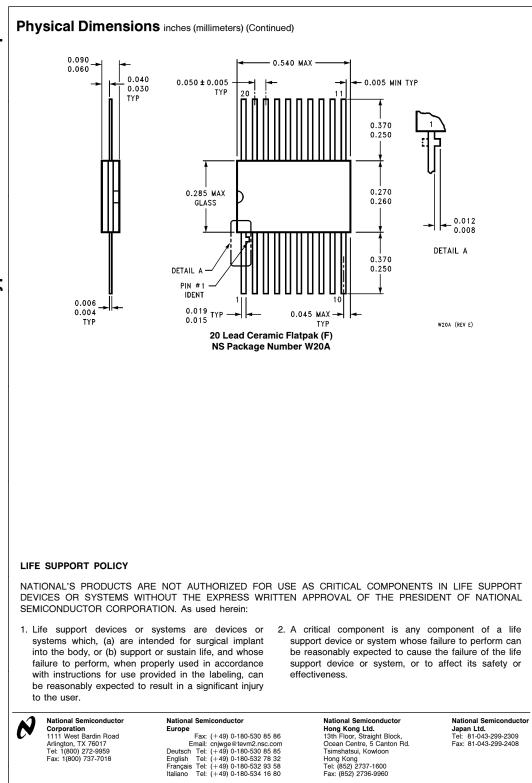
Free Air Ambient Temperature

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		54F/74F			Units	Vcc	Conditions	
oymbol			Min	Тур	Max		•00	Conditione	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Sign	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			v	Min		
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			v	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
Ι _{ΙL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$	
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$	
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$	
ICCL	Power Supply Current			35	55	mA	Max	V _O = LOW	
I _{CCZ}	Power Supply Curren	t		35	55	mA	Max	V _O = HIGH Z	


Symbol		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 \text{ pF}$			$54F$ $T_{A}, V_{CC} = Mil$ $C_{L} = 50 \text{ pF}$		74F T _A , V _{CC} = Com C _L = 50 pF		Units
	Parameter								
		Min	Тур	Мах	Min	Мах	Min	Мах	
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	3.0 2.0	5.3 3.7	7.0 6.0	3.0 2.0	9.0 7.0	3.0 2.0	8.0 6.5	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	5.0 3.0	9.0 5.2	11.0 7.0	5.0 3.0	13.5 7.5	5.0 3.0	12.0 7.0	ns
t _{PZH} t _{PZL}	Output Enable Time	2.0 2.0	5.0 5.6	8.0 8.5	2.0 2.0	10.0 10.0	2.0 2.0	9.0 9.5	- ns
t _{PHZ} t _{PLZ}	Output Disable Time	1.5 1.5	4.5 3.8	5.5 5.5	1.5 1.5	7.0 5.5	1.5 1.5	6.5 5.5	115


AC Operating Requirements

		74F T _A = +25°C V _{CC} = +5.0V		54	F	74F		
Symbol	Parameter			$\mathbf{T}_{\mathbf{A}}, \mathbf{V}_{\mathbf{CC}} = \mathbf{Mil}$		$T_A, V_{CC} = Com$		Units
		Min	Max	Min	Max	Min	Max	
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to LE	2.0 2.0		2.0 2.0		2.0 2.0		
t _h (H)	Hold Time, HIGH or LOW	3.0		3.0		3.0		– ns
t _h (L) t _w (H)	D _n to LE LE Pulse Width, HIGH	3.5 4.0		4.0		3.5 4.0		ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications