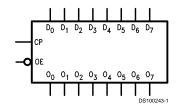


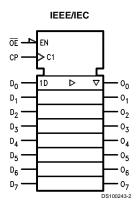
54ACTQ574

Quiet Series Octal D Flip-Flop with TRI-STATE® Outputs

General Description

The ACTQ574 is a high-speed, low-power octal D-type flip-flop with a buffered Common Clock (CP) and a buffered common Output Enable $(\overline{\text{OE}})$. The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH clock (CP) transition.


ACTQ574 utilizes Quiet Series technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Series™ features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.


The ACTQ574 is functionally identical to the 'ACTQ374 but with different pin-out.

Features

- I_{CC} and I_{OZ} reduced by 50%
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Inputs and outputs on opposite sides of the package allowing easy interface with microprocessors
- Functionally identical to the ACTQ374
- TRI-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24 mA
- Faster prop delays than the standard ACT574
- 4 kV minimum ESD immunity

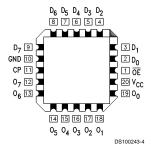
Logic Diagrams

Pin Names	Description
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input
ŌĒ	TRI-STATE Output Enable Input
O ₀ -O ₇	TRI-STATE Outputs

GTO™ is a trademark of National Semiconductor Corporation.


TRI-STATE® is a registered trademark of National Semiconductor Corporation.

FACT® is a registered trademark of Fairchild Semiconductor Corporation.


FACT Quiet Series™ is a trademark of Fairchild Semiconductor Corporation.

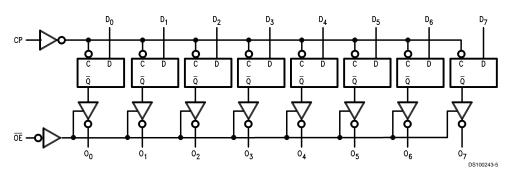
Connection Diagrams

Pin Assignment for DIP and Flatpak

Pin Assignment for LCC

Functional Description

The ACTQ574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops.


Function Table

In	Inputs		Inputs Internal Out		Outputs	Function
ŌĒ	СР	D	Q	O _N		
Н	Н	L	NC	Z	Hold	
Н	Н	Н	NC	Z	Hold	
Н	~	L	L	Z	Load	
Н	~	Н	Н	Z	Load	
L	~	L	L	L	Data Available	
L	~	Н	Н	Н	Data Available	
L	Н	L	NC	NC	No Change in	
					Data	
L	Н	Н	NC	NC	No Change in	
					Data	

- H = HIGH Voltage Level L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance

 = LOW-to-HIGH Transition
- NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (IIK)

 $V_1 = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA DC Input Voltage (V_I) –0.5V to $V_{\rm CC}$ + 0.5V

DC Output Diode Current (I_{OK})

 $V_{\rm O} = -0.5 V$ -20 mA $V_O = V_{CC} + 0.5V$ +20 mA -0.5V to $V_{\rm CC}$ + 0.5V

DC Output Voltage (V_O) DC Output Source

or Sink Current (I_O) ±50 mA

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ±50 mA Storage Temperature (T_{STG}) -65°C to +150°C

DC Latch-Up Source or

Sink Current ±300 mA

Junction Temperature (T_J)

175°C CDIP

Recommended Operating Conditions

Supply Voltage (V_{CC})

4.5V to 5.5V 'ACTQ Input Voltage (V_I) 0V to $\rm V_{\rm CC}$ Output Voltage (V_O) 0V to $V_{\rm CC}$

Operating Temperature (T_A)

54ACTQ -55°C to +125°C

Minimum Input Edge Rate $\Delta V/\Delta t$

'ACTQ Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

Note 1: All commercial packaging is not recommended for applications requiring greater than 2000 temperature cycles from –40°C to +125°C.

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for 'ACTQ Family Devices

	Parameter		54ACTQ	Units	Conditions
Symbol		V _{cc}	T _A =		
		(V)	-55°C to +125°C		
			Guaranteed Limits	1	
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V
/ _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V
√ _{OH}	Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.4		
					(Note 3)
					$V_{IN} = V_{IL}$ or V_{IH}
		4.5	3.70	V	I _{OH} = -24 mA
		5.5	4.70		I _{OH} = -24 mA
V _{OL}	Maximum Low Level	4.5	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.1		
					(Note 3)
					$V_{IN} = V_{IL}$ or V_{IH}
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
IN	Maximum Input Leakage Current	5.5	±1.0	μA	$V_I = V_{CC}$, GND
oz	Maximum TRI-STATE	5.5	±5.0	μA	$V_{I} = V_{IL}, V_{IH}$
	Leakage Current				$V_O = V_{CC}$, GND
ССТ	Maximum I _{CC} /Input	5.5	1.6	mA	$V_{I} = V_{CC} - 2.1V$
OLD	(Note 4)	5.5	50	mA	V _{OLD} = 1.65V Max
	Minimum Dynamic				
OHD	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min
СС	Maximum Quiescent	5.5	80.0	μA	V _{IN} = V _{CC}
	Supply Current				or GND (Note 5)

DC Electrical Characteristics for 'ACTQ Family Devices (Continued)

			54ACTQ			
Symbol	Symbol Parameter		T _A =	Units	Conditions	
		(V)	(V) -55°C to +125°C			
			Guaranteed Limits			
V _{OLP}	Quiet Output	5.0	1.5	V	(Notes 6, 7)	
	Maximum Dynamic V _{OL}					
V _{OLV}	Quiet Output	5.0	-1.2	V	(Notes 6, 7)	
	Minimum Dynamic V _{OL}					

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I_{CC} for 54ACTQ @ 25°C is identical to 74ACTQ @ 25°C.

Note 6: Plastic DIP package.

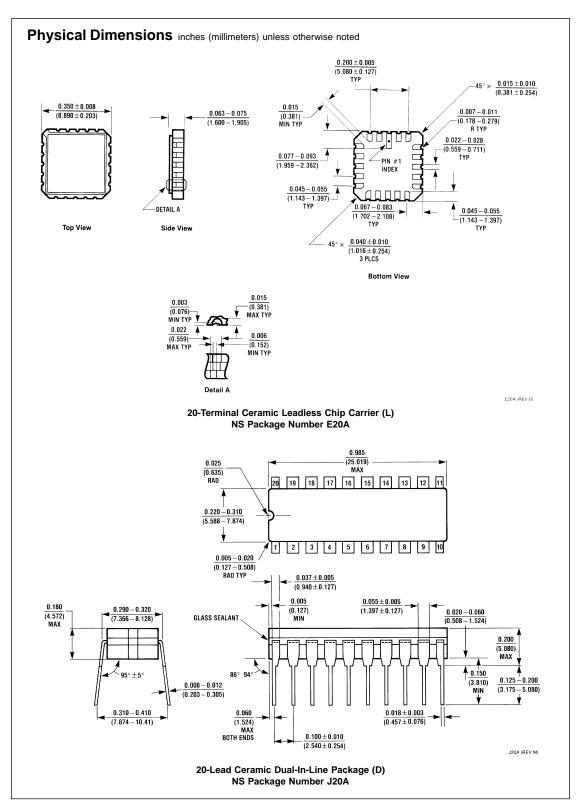
Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND.

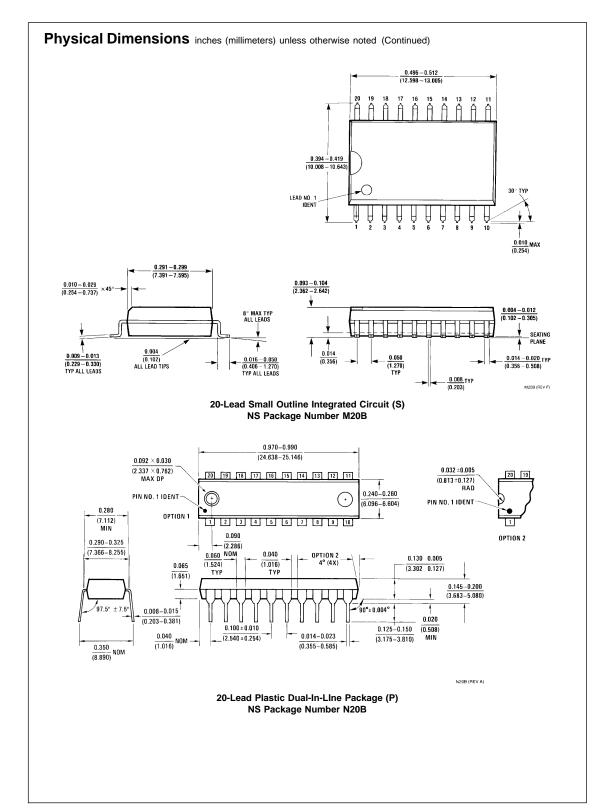
Note 8: Max number of data inputs (n) switching. (n-1) inputs switching 0V to 3V ('ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

AC Electrical Characteristics

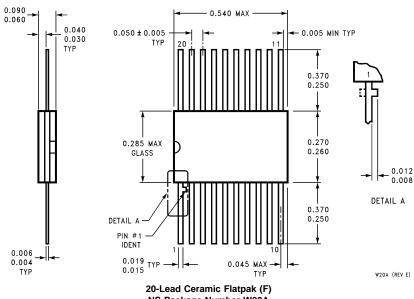
	Parameter		54A	Units	
		V _{cc}	T _A =		
Symbol		(V) (Note 9)	to +		
			Min	Max	
f _{max}	Maximum Clock Frequency	5.0	95		MHz
t _{PLH} , t _{PHL}	Propagation Delay CP to \overline{O}_n	5.0	1.0	11.0	ns
t _{PZH} , t _{PZL}	Output Enable Time	5.0	1.0	11.0	ns
t _{PHZ} ,	Output Disable Time	5.0	1.0	10.0	ns

Note 9: Voltage Range 5.0 is 5.0V ±0.5V.


Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.


AC Operating Requirements

Symbol	Parameter	V _{cc} (V) (Note 11)	54ACTQ T _A = -55°C to +125°C C _L = 50 pF Guaranteed Minimum	Units
t _S	Setup Time, HIGH or LOW	5.0	3.5	ns
	D _n to CP			
t _H	Hold Time, HIGH or LOW	5.0	2.0	ns
	D _n to CP			
t _w	CP Pulse Width,	5.0	5.0	ns
	HIGH or LOW			


Note 11: Voltage Range 5.0 is 5.0V ± 0.5 V

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NS Package Number W20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-532 85 85

English Tel: +49 (0) 1 80-532 78 32

Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconducto Asia Pacific Customer Response Group Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179