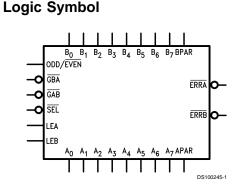
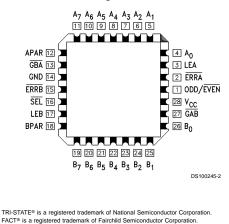
National Semiconductor


54ACT899 9-Bit Latchable Transceiver with Parity Generator/Checker

General Description

The ACT899 is a 9-bit to 9-bit parity transceiver with transparent latches. The device can operate as a feed-through transceiver or it can generate/check parity from the 8-bit data busses in either direction. The ACT899 features independent latch enables for the A-to-B direction and the B-to-A direction, a select pin for ODD/EVEN parity, and separate error signal output pins for checking parity.


Features

- Latchable transceiver with output sink of 24 mA
- Option to select generate parity and check or
- "feed-through" data/parity in directions A-to-B or B-to-A

Connection Diagram

Pin Assignment for LCC

- Independent latch enable for A-to-B and B-to-A directions
- Select pin for ODD/EVEN parity
- ERRA and ERRB output pins for parity checking
- Ability to simultaneously generate and check parity
- May be used in system applications in place of the '280
- May be used in system applications in place of the '657 and '373 (no need to change T/R to check parity)
- 4 kV minimum ESD immunity
- Standard Microcircuit Drawing (SMD) 5962-9314101

Pin Names	Description			
A ₀ -A ₇	A Bus Data Inputs/Data Outputs			
B ₀ -B ₇	B Bus Data Inputs/Data Outputs			
APAR, BPAR	A and B Bus Parity Inputs			
ODD/EVEN	ODD/EVEN Parity Select, Active LOW for EVEN Parity			
GBA, GAB	Output Enables for A or B Bus, Active LOW			
SEL	Select Pin for Feed-Through or Generate Mode, LOW for Generate Mode			
LEA, LEB	Latch Enables for A and B Latches, HIGH for Transparent Mode			
ERRA, ERRB	Error Signals for Checking Generated Parity with Parity In, LOW if Error Occurs			

54ACT899 9-Bit Latchable Transceiver with Parity Generator/Checker

© 1998 National Semiconductor Corporation DS100245

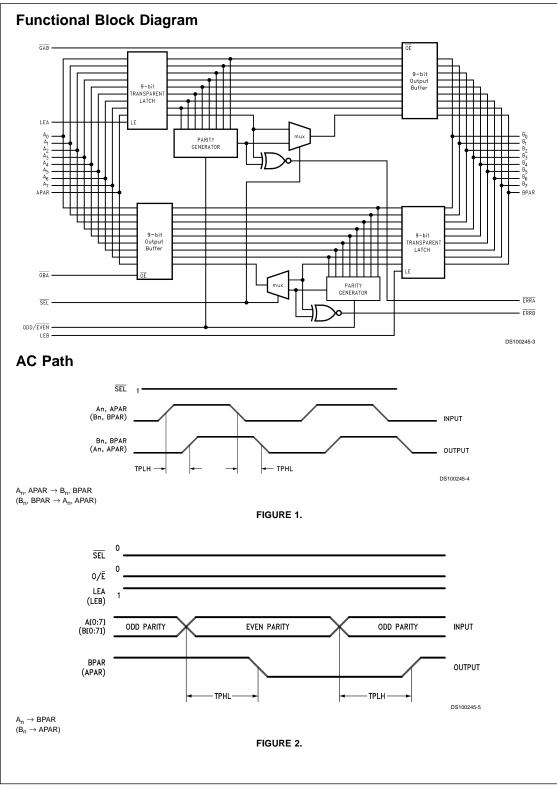
Functional Description

The ACT899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B-to-A directions.

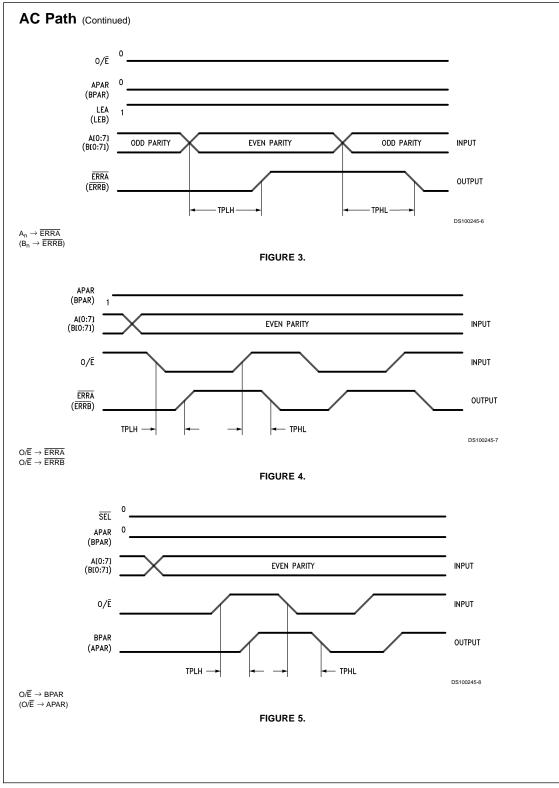
 Bus A (B) communicates to Bus B (A), parity is generated and passed on to the B (A) Bus as BPAR (APAR). If LEB (LEA) is HIGH and the Mode Select (SEL) is LOW, the parity generated from B[0:7] (A[0:7]) can be checked and monitored by ERRB (ERRA).

Bus A (B) communicates to Bus B (A) in a feed-through mode if <u>SEL</u> is <u>HIGH</u>. Parity is still generated and checked as <u>ERRA</u> and <u>ERRB</u> in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU). Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table

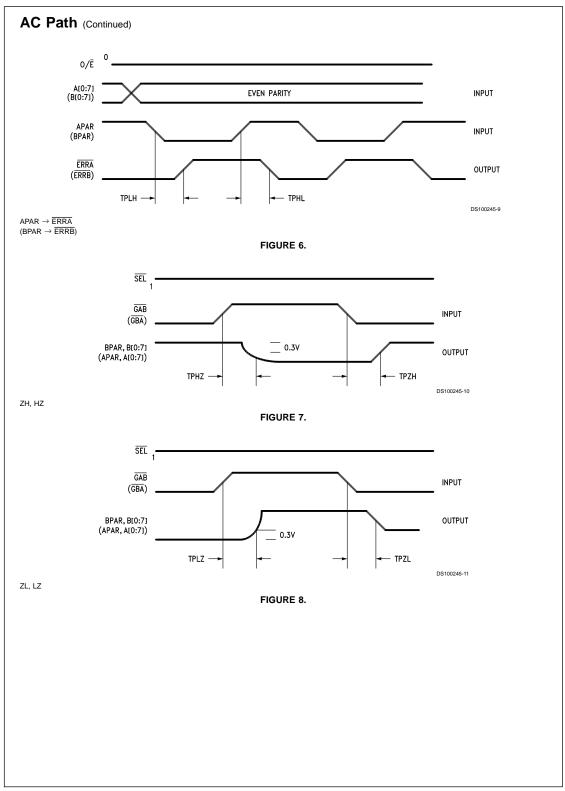
below).

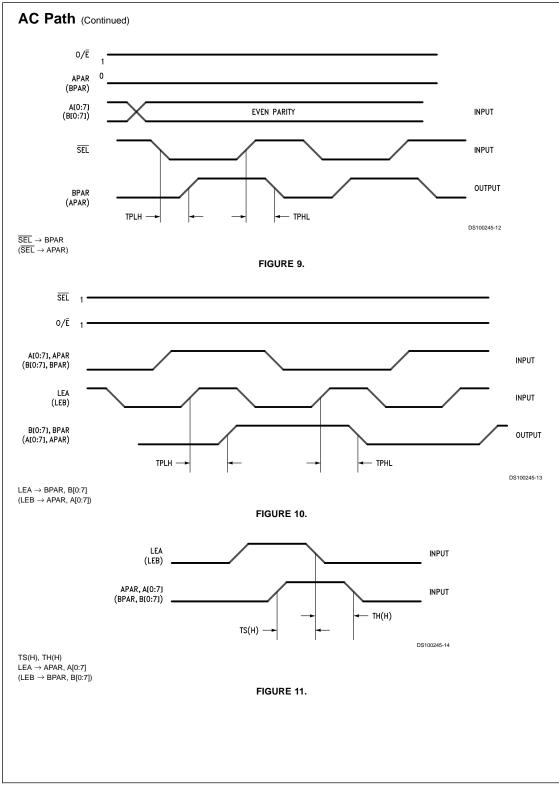

Function Table

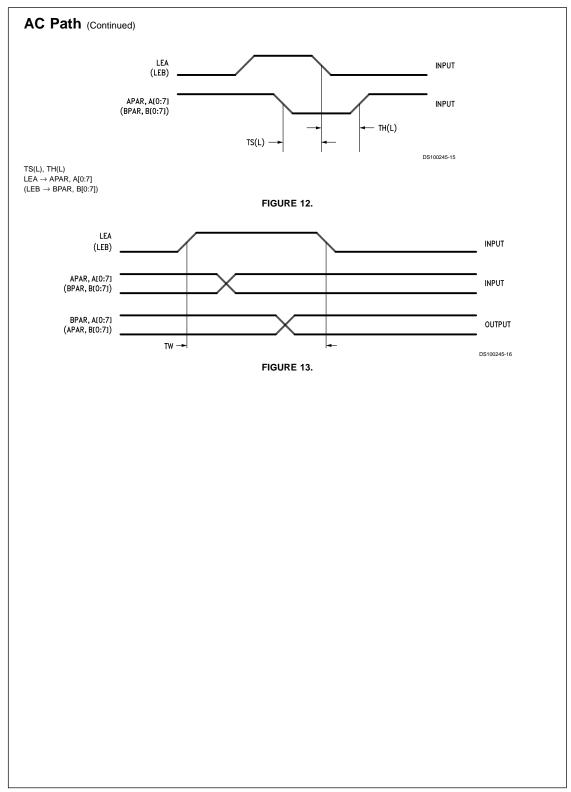
Inputs			Operation						
GAB	AB GBA SEL LEA LEB				1				
Н	Н	Х	Х	Х	Busses A and B are TRI-STATE®.				
Н	L	L	L	Н	Generates parity from B[0:7] based on O/ \overline{E} (Note 1). Generated p \rightarrow APAR. Generated parity checked against BPAR and output as \overline{ERRB} .				
Н	L	L	Н	Н	Generates parity from B[0:7] based on O/\overline{E} . Generated parity \rightarrow APAR. Generated parity checked against BPAR and output as \overline{ERRB} . Generated parity also fed back through the A latch for generate/check as \overline{ERRA} .				
Н	L	L	Х	L	Generates parity from B latch data based on O/Ē. Generated parity → APAR. Generated parity checked against latched BPAR and output as ERRB.				
Н	L	н	Х	н	$BPAR/B[0:7] \rightarrow APAR/A0:7]$ Feed-through mode. Generated particle checked against BPAR and output as ERRB.				
Н	L	н	н	н	$BPAR/B[0:7] \to APAR/A[0:7]$				
					Feed-through mode. Generated parity checked against BPAR and output as ERRB. Generated parity also fed back through the A latch for generate/check as ERRA.				
L	н	L	Н	L	Generates parity for A[0:7] based on O/ \overline{E} . Generated parity \rightarrow BP/ Generated parity checked against APAR and output as \overline{ERRA} .				
L	н	L	Н	Н	Generates parity from A[0:7] based on O/\overline{E} . Generated parity \rightarrow BPAR. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.				
L	н	L	L	Х	Generates parity from A latch data based on O/\overline{E} . Generated parity \rightarrow BPAR. Generated parity checked against latched APAR and output as ERRA.				
L	н	н	н	L	$APAR/A[0:7] \rightarrow BPAR/B[0:7]$				
					Feed-through mode. Generated parity checked against APAR and output as ERRA.				
L	н	н	н	н	$APAR/A[0:7] \rightarrow BPAR/B[0:7]$				
					Feed-through mode. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.				


H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial


Note 1: O/E = ODD/EVEN




3

4

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_1 = -0.5V$	–20 mA
$V_{1} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C

DC Latch-Up Source or Sink Current Junction Temperature (T _J) CDIP	±300 mA 175°C
Recommended Operating Conditions	
Supply Voltage (V _{CC}) 'ACT	4.5V to 5.5V

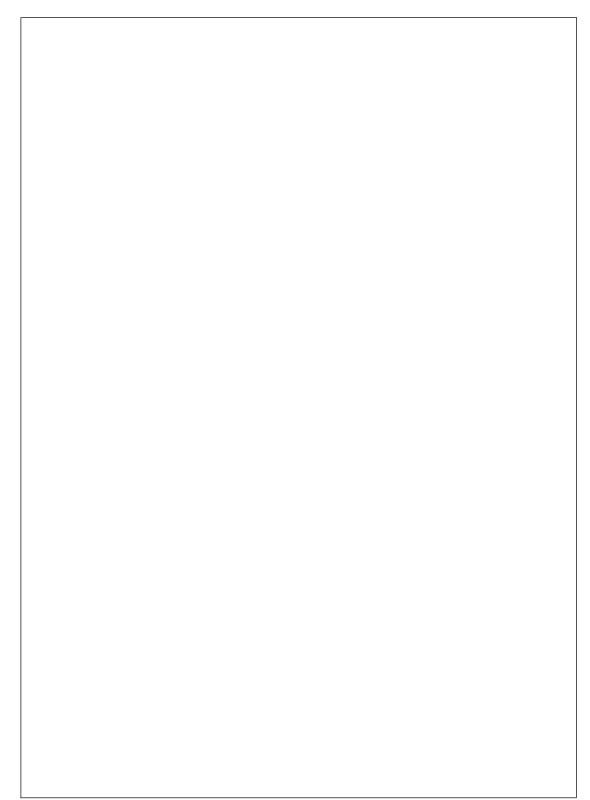
AUT	4.57 10 5.57				
Input Voltage (V _I)	0V to V_{CC}				
Output Voltage (V _O)	0V to V_{CC}				
Operating Temperature (T _A)					
54ACT	–55°C to +125°C				
Minimum Input Edge Rate $\Delta V/\Delta t$					
'ACT Devices					
V _{IN} from 0.8V to 2.0V					
V _{CC} @ 4.5V, 5.5V	125 mV/ns				
Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without					

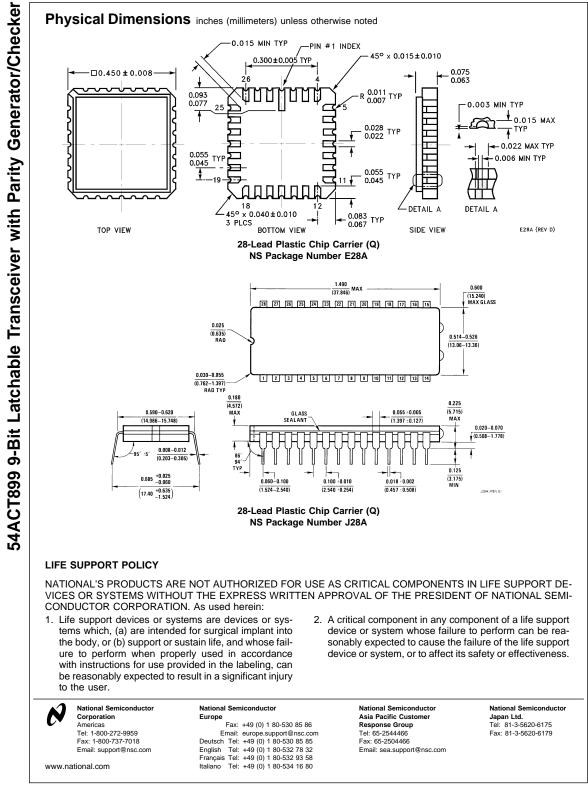
to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT® circuits outside databook specifications. **Note 3:** PLCC packaging is not recommended for applications requiring greater than 2000 temperature cycles from -40°C to +125°C.

DC Electrical Characteristics for 'ACT Family Devices

			54ACT		
Symbol	Parameter	V _{cc}	T _A =	Units	Conditions
		(V)	–55°C to +125°C		
			Guaranteed Limits		
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or $V_{CC} - 0.1V$
V _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or $V_{CC} - 0.1V$
V _{он}	Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.4		
					(Note 4)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	3.70	V	I _{ОН} = -24 mA
		5.5	4.70		I _{ОН} = -24 mA
V _{OL}	Maximum Low Level	4.5	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.1		
					(Note 4)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_{I} = V_{CC}, GND$
	Leakage Current				
l _{oz}	Maximum TRI-STATE	5.5	±10.0	μA	$V_{I} = V_{IL}, V_{IH}$
	Leakage Current				$V_{O} = V_{CC}, GND$
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_1 = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 5)	5.5	-50	mA	V _{OHD} = 3.85V Min

			54AC	т		
Symbol	Parameter	V _{cc}	T _A =		Units	Conditions
		(V)	-55°C to +125°C Guaranteed Limits			
I _{CC}	Maximum Quiescent Supply Current	5.5	160.0)	μA	V _{IN} = V _{CC} or GND (Note 6)
Note 5: Ma Note 6: I _{CC}	kimum of 9 outputs loaded; thresholds on inpu kimum test duration 2.0 ms, one output loadec for 54ACT @ 25°C is identical to 74ACT @ 25	l at a time. °C.				
		, 5 	54	ACT		1
		V _{cc}		–55°C	\neg	Fig.
Symbol	Parameter	(V)		125°C	Units	No.
,		(Note 7)	$C_{L} = 50 \text{ pF}$			
			Min	Max		
PLH	Propagation Delay	5.0	1.5	13.5	ns	Figure 1
PHL	A _n , B _n to B _n , A _n					
PLH	Propagation Delay	5.0	1.5	11.0	ns	Figure 1
PHL	APAR, BPAR to BPAR, APAR					
PLH	Propagation Delay	5.0	1.5	16.0	ns	Figure 2
PHL	A _n , B _n to BPAR, APAR				F i o	
^I PLH	Propagation Delay	5.0	1.5	16.0	ns	Figure 3
PHL	A _n , B _n to ERRA, ERRB	5.0	1 5	16.0		Eiguro 4
PLH	Propagation Delay ODD/EVEN to ERRA, ERRB	5.0	1.5	16.0	ns	Figure 4
	Propagation Delay	5.0	1.5	14.5	ns	Figure 5
PHL	ODD/EVEN to APAR, BPAR					
	Propagation Delay	5.0	1.5	11.5	ns	Figure 6
PHL	APAR, BPAR to ERRA, ERRB					
PLH	Propagation Delay	5.0	1.5	12.5	ns	Figure 9
PHL	SEL to APAR, BPAR					
PLH	Propagation Delay	5.0	1.5	13.5	ns	Figures 10, 11
PHL	LEB to A _n , B _n					
PLH	Propagation Delay	5.0	1.5	16.0	ns	Figures 10, 11
PHL	LEA to APAR, BPAR					
PLH	Propagation Delay	5.0	1.5	16.0	ns	Figure 12
PHL	LEA, LEB to ERRA, ERRB		4 -	40.0		
PZH	Output Enable Time	5.0	1.5	16.0	ns	Figures 7, 8
PZL	GBA or GAB to A _n , B _n Output Enable Time	F 0	4 5	44.0		Figure 7.0
PZH	$\overline{\text{GBA}}$ or $\overline{\text{GAB}}$ to BPAR or APAR	5.0	1.5	11.0	ns	Figures 7, 8
PZL	Output Disable Time	5.0	1.5	11.0		Figures 7, 8
PHZ	$\overline{\text{GBA}}$ or $\overline{\text{GAB}}$ to A_n , B_n	5.0	1.0	11.0	ns	riguies 7, 8
PHL	ODA OF GAD TO An, Dn				1	
PHZ	Output Disable Time	5.0	1.5	11.0	ns	Figures 7, 8


AC Operating Requirements


Symbol	Parameter	V _{cc} (V) (Note 8)	$54ACT$ $T_A = -55°C$ to +125°C $C_L = 50 \text{ pF}$ Guaranteed Minimum	Units	Fig. No.
t _s	Setup Time, HIGH or LOW A _n , B _n , PAR to LEA, LEB	5.0	3.0	ns	Figures 11, 12
t _h	Hold Time, HIGH or LOW A _n , B _n , PAR to LEA, LEB	5.0	3.0	ns	Figures 11, 12
t _w	Pulse Width for LEB, LEA	5.0	4.0	ns	Figure 13

Note 8: Voltage Range 5.0 = 5.0V ±0.5V.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation	210	pF	$V_{CC} = 5.0V$
	Capacitance			

