July 1998

54ABT573 Octal D-Type Latch with TRI-STATE Outputs

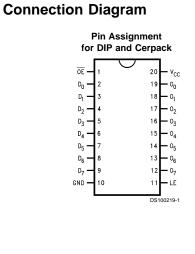
National Semiconductor

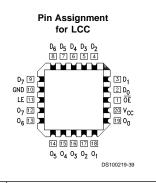
54ABT573 Octal D-Type Latch with TRI-STATE[®] Outputs

General Description

The 'ABT573 is an octal latch with buffered common Latch Enable (LE) and buffered common Output Enable $(\overline{\text{OE}})$ inputs.

This device is functionally identical to the 'ABT373 but has different pinouts.


Features


- Inputs and outputs on opposite sides of package allow easy interface with microprocessors
- Useful as input or output port for microprocessors

- Functionally identical to 'ABT373
- TRI-STATE outputs for bus interfacing
- Output sink capability of 48 mA, source capability of 24 mA
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed latchup protection
- High impedance glitch-free bus loading during entire power up and power down
- Nondestructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9321901

Ordering Code

Military	Package Number	Package Description
54ABT573J-QML	J20A	20-Lead Ceramic Dual-In-Line
54ABT573W-QML	W20A	20-Lead Cerpack
54ABT573E-QML	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

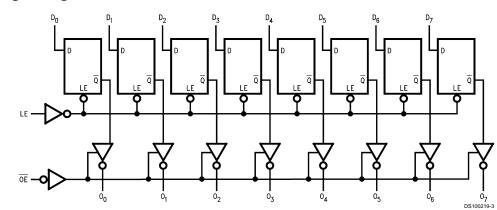
Pin	in Description			
Names				
D ₀ -D ₇	Data Inputs			
LE	Latch Enable Input (Active HIGH)			
OE TRI-STATE Output Enable Input				
	(Active LOW)			
0 ₀ -0 ₇	TRI-STATE Latch Outputs			

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Functional Description

The 'ABT573 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is does not interfere with entering new data into the latches.

Logic Diagram


Function Table

	Outputs		
ŌE	LE	D	0
L	Н	Н	Н
L	н	L	L
L	L	Х	O ₀
н	Х	Х	Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial $O_0 = Value$ stored from previous clock cycle

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

_	
Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to +5.5V
in the HIGH State	–0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	Twice the rated I _{OL} (mA)
DC Latchup Source Current	–500 mA

Over Voltage Latchup (I/O)

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	–55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Note 1: Absolute maximum ratings are values be damaged or have its useful life impaired. Fu conditions is not implied.	

10V

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Para	Parameter ABT573 Units V _{CC}		Vcc	Conditions			
			Min	Тур	Max			
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Volta	ige			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{OH} = -3 mA
		54ABT	2.0					I _{OH} = -24 mA
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
IIH	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)
					5			V _{IN} = V _{CC}
I _{BVI}	Input HIGH Current				7	μA	Max	V _{IN} = 7.0V
	Breakdown Test							
IIL	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)
					-5			$V_{IN} = 0.0V$
VID	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Current				50	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$
I _{OZL}	Output Leakage Current				-50	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$
I _{OS}	Output Short-Circuit Cur	rent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
ICEX	Output High Leakage Cu	urrent			50	μA	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Others GND
ICCH	Power Supply Current				50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				50	μA	Max	$\overline{OE} = V_{CC}$
								All Others at V _{CC} or GND
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_{I} = V_{CC} - 2.1V$
		Outputs TRI-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
		Outputs TRI-STATE			2.5	mA		Data Input V _I = V _{CC} - 2.1V
								All Others at V_{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open
	(Note 4)				0.12	MHz		\overline{OE} = GND, LE = V _{CC} (Note 3)
								One Bit Toggling, 50% Duty Cycle

Note 3: For 8 bits toggling, I_{CCD} < 0.8 mA/MHz.

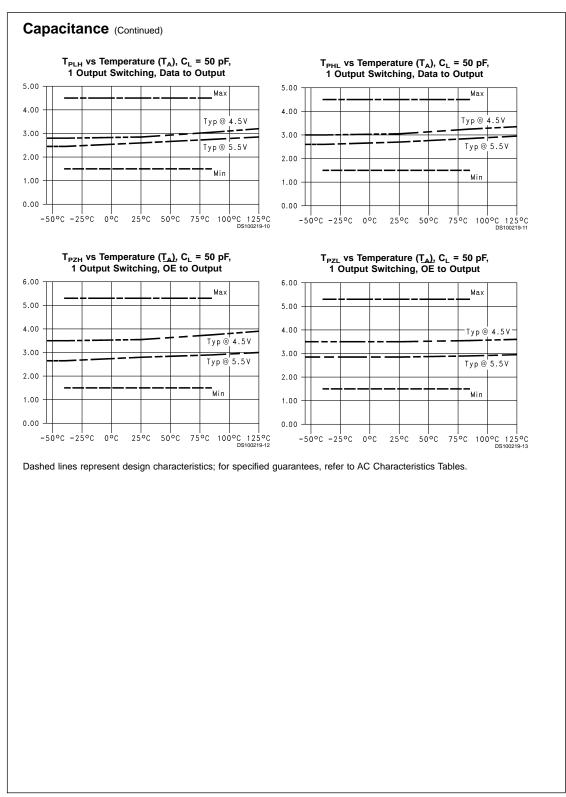
Note 4: Guaranteed but not tested.

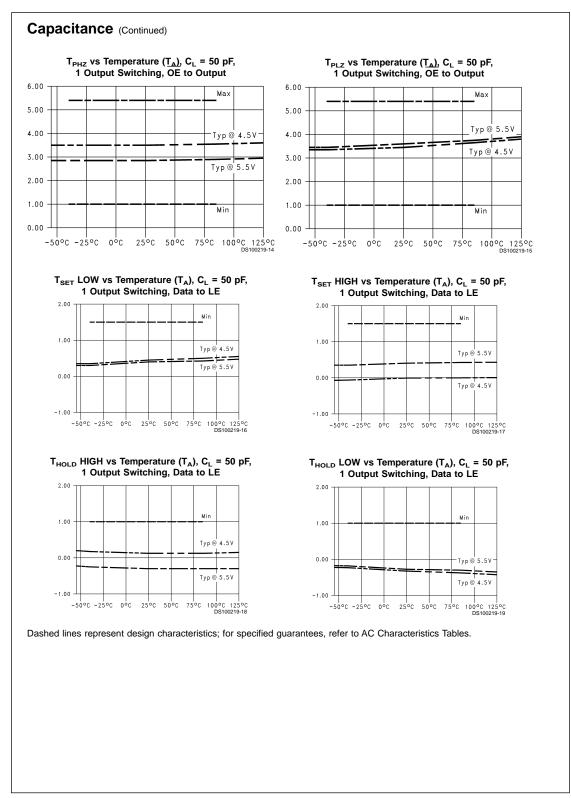
Symbol	Parameter	Min	Max	Units	V _{cc}	Conditions $C_L = 50 \text{ pF}, R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.9	V	5.0	T _A = 25°C (Note 5)
VOLV	Quiet Output Minimum Dynamic V _{OL}		-1.7	V	5.0	$T_A = 25^{\circ}C$ (Note 5)

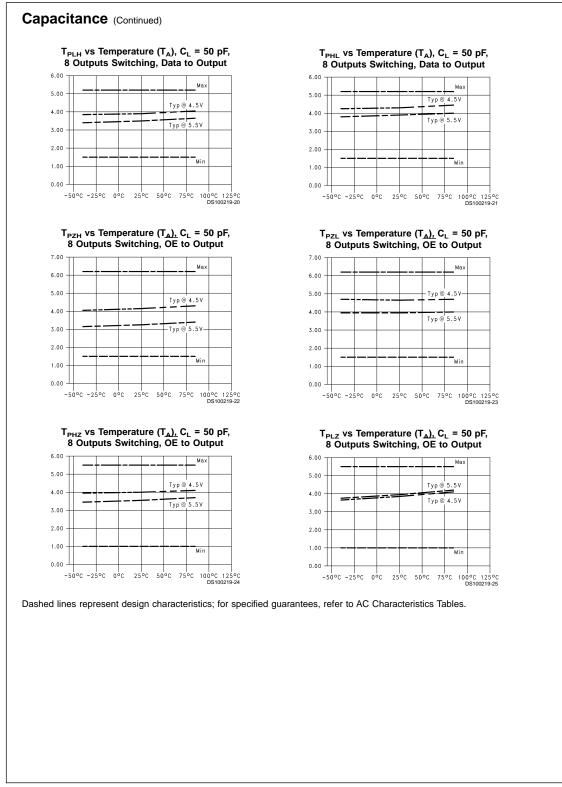
Note 5: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

AC Electrical Characteristics

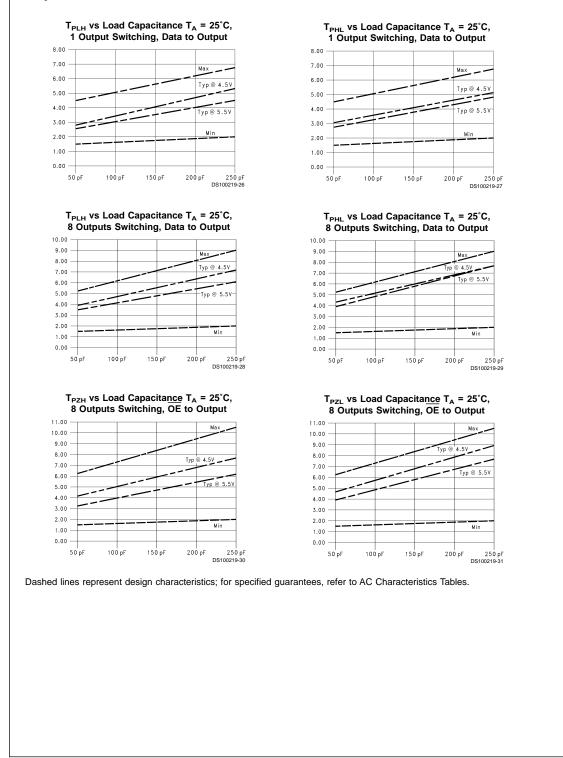
Symbol	Parameter	Parameter 54ABT		Parameter 54ABT		Units	Fig.
		T _A = -55°C to +125°C			No.		
	V _{cc} = 4.5V to 5.5V						
		C _L =	50 pF				
		Min	Max				
t _{PLH}	Propagation Delay	1.0	6.4	ns	Figure 4		
t _{PHL}	D _n to O _n	1.5	6.7				
t _{PLH}	Propagation Delay	1.0	7.1	ns	Figure 4		
t _{PHL}	LE to O _n	1.5	7.5				
t _{PZH}	Output Enable Time	0.8	6.5	ns	Figure 6		
t _{PZL}		1.5	7.2				
t _{PHZ}	Output Disable Time	1.5	7.7	ns	Figure 6		
t _{PLZ}	Time	1.0	7.0				

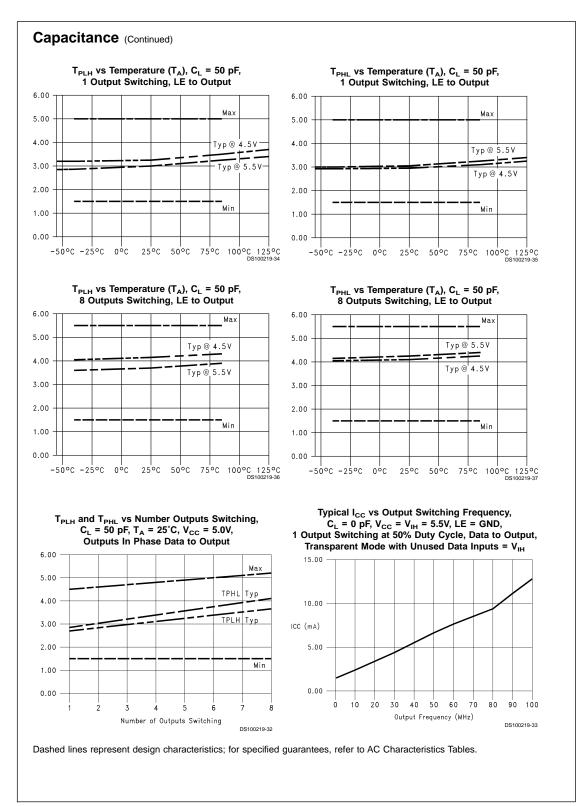

AC Operating Requirements

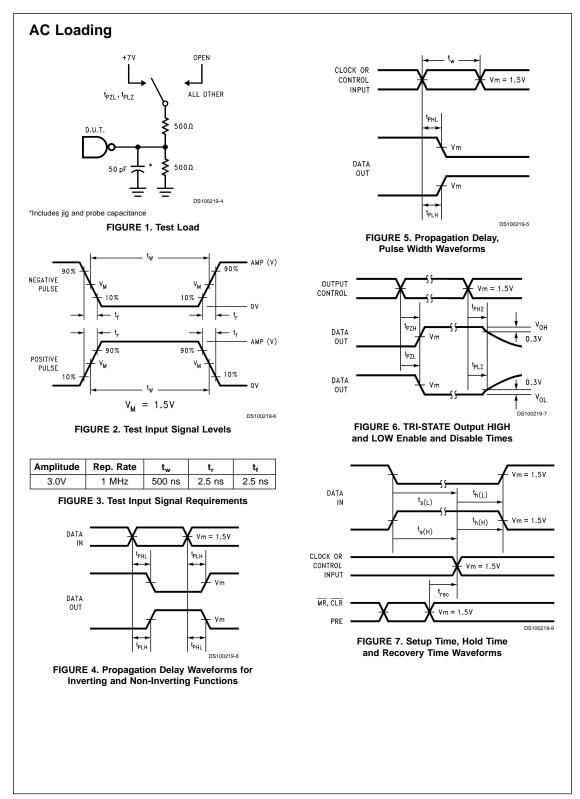

Symbol	Symbol Parameter 54ABT T _A = -55°C to +125°C T _A = -55°C to +125°C		Units	Fig.	
				No.	
		V _{CC} = 4.5V to 5.5V C _L = 50 pF			
		Min	Max		
t _s (H)	Set Time, HIGH	2.5		ns	Figure
				113	7
t _s (L)	or LOW D _n to LE	2.5			
t _h (H)	Hold Time, HIGH	2.5		ns	Figure
				113	7
t _h (L)	or LOW D _n to LE	2.5			
t _w (H)	Pulse Width,	3.3		20	Figure
				ns	5
	LE HIGH				

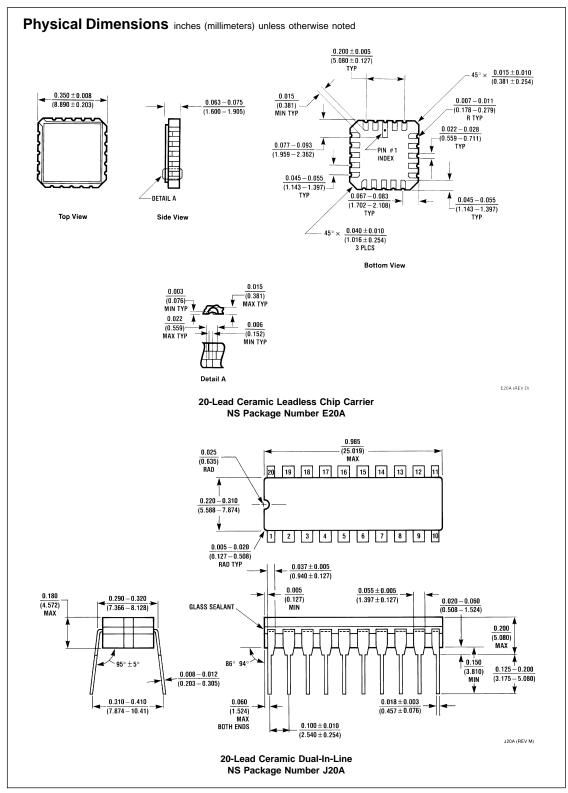

Capacitance

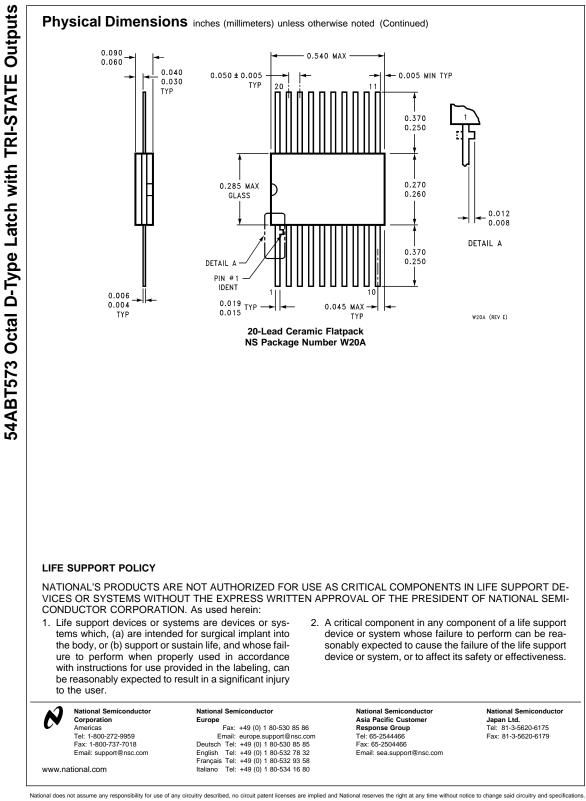
Symbol	Parameter T		Units	Conditions
				(T _A = 25°C)
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0V$
C _{OUT} (Note 6)	Output Capacitance	9	pF	$V_{CC} = 5.0V$


Note 6: C_{OUT} is measured at frequency f = 1 MHz per MIL-STD-883B, Method 3012.









10

