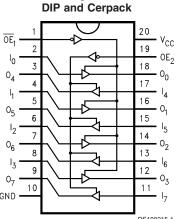


54ABT241 **Octal Buffer/Line Driver with TRI-STATE® Outputs General Description** Features


The ABT241 is an octal buffer and line driver with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/receiver.

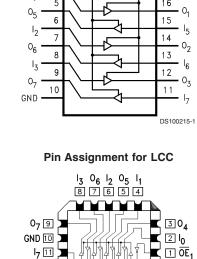
- Non-inverting buffers
- Output sink capability of 48 mA, source capability of 24 mA
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9322701

Ordering Code

Military	Package Number	Package Description
54ABT241J-QML	J20A	20-Lead Ceramic Dual-In-Line
54ABT241W-QML	W20A	20-Lead Cerpack
54ABT241E-QML	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Connection Diagram

Pin Assignment for


Pin Na	ames	Description					
\overline{OE}_1	(Output Enable Input (Active Low)					
OE ₂		Output Ena	ble Input	(Active High	gh)		
ا ₀ –ا ₇		nputs					
0 ₀ -0 ₇		Outputs					
		O_{0-3} \overline{OE}_2 I_{4-7} O_{4-7}					
OE ₁	I ₀₋₃	0 ₀₋₃	OE ₂	I ₄₋₇	0 ₄₋₇		
OE ₁ H	I ₀₋₃ Х	О ₀₋₃ Z	OE ₂	I ₄₋₇ Х	0 ₄₋₇ Z		
	Х	Z	L	X	Z		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial Z = High Impedance

July 1998

14 15 16 17 18 $0_2 \ I_5 \ 0_1 \ I_4 \ 0_0$ 20 V_{CC}

19 OE₂

DS100215-4

TRI-STATE® is a registered trademark of National Semiconductor Corporation. DS100215 © 2004 National Semiconductor Corporation

03 12 l₆ 13 🕽

Absolute Maximum Ratings (Note 1)

	0
Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	–0.5V to V $_{\rm CC}$
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

DC Latchup Source Current	
(Over Comm Operating Range)	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature

Military	–55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V/\Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Note 1: Absolute maximum ratings are value	, , ,

be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Para	meter	Min	Тур 🛛	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vol	tage		-	-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{он} = –3 mA
		54ABT	2.0			V	Min	I _{он} = –24 mA
V _{OL}	Output LOW Voltage	54ABT		C).55	V	Min	I _{OL} = 48 mA
IIH	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Bro	eakdown Test			7	μA	Max	V _{IN} = 7.0V
I_{IL}	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)
					-5			$V_{IN} = 0.0V$
VID	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{ozh}	Output Leakage Currer	nt			50	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Currer	nt			-50	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{os}	Output Short-Circuit Cu	ırrent	-100		275	mA	Max	$V_{OUT} = 0.0V$
I_{CEX}	Output High Leakage (Current			50	μA	Max	$V_{OUT} = V_{CC}$
I _{zz}	Bus Drainage Test				100	μA	0.0	$V_{OUT} = 5.5V$; All Others GND
I _{CCH}	Power Supply Current				50	μA	Max	All Outputs HIGH
I_{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{ccz}	Power Supply Current				50	μA	Max	$\overline{OE}_n = V_{CC};$
								All Others at V_{CC} or Ground
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA	Max	$V_{I} = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA		Enable Input $V_1 = V_{CC} - 2.1V$
		Outputs 3-STATE			50	μA		Data Input V _I = V _{CC} - 2.1V
								All Others at V_{CC} or Ground
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open
	(Note 4)				0.1	MHz		$\overline{OE}_n = GND$, (Note 3)
								One Bit Toggling, 50%
								Duty Cycle

Note 3: For 8 bits toggling, I_{CCD} < 0.8 mA/MHz.

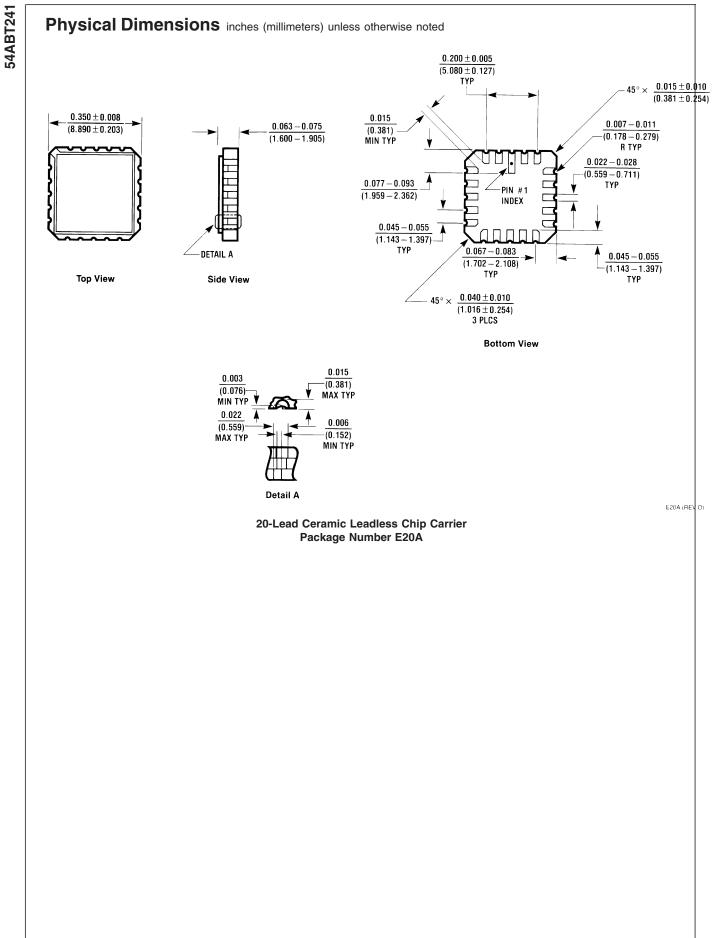
Note 4: Guaranteed, but not tested.

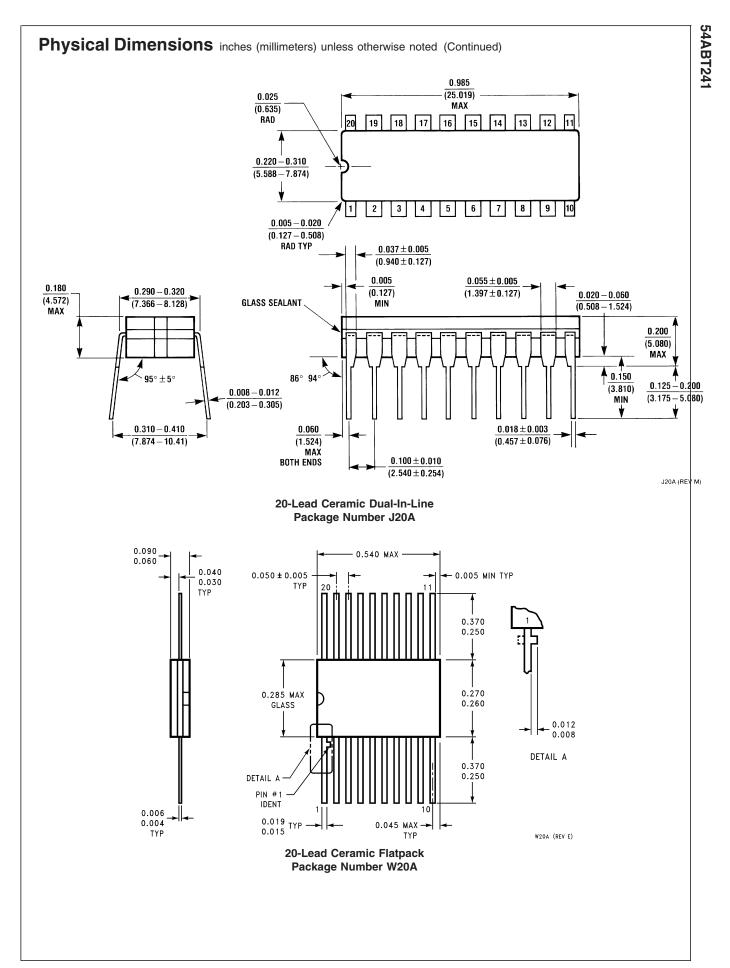
54ABT241

DC Electrical Characteristics

Symbol	Parameter	Min	Мах	Units	V _{cc}	Conditions $C_L = 50 \text{ pF},$ $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.67	V	5.0	$T_{A} = 25^{\circ}C$ (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-1.35	V	5.0	$T_A = 25^{\circ}C$ (Note 5)

Note 5: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.


AC Electrical Characteristics


Symbol	Parameter	$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_{L} = 50 \text{ pF}$		Units	
		Min	Max]	
t _{PLH}	Propagation Delay	0.8	5.3	ns	
t _{PHL}	Data to Outputs	0.8	5.0		
t _{PZH}	Output Enable	1.0	7.0	ns	
t _{PZL}	Time	1.0	7.0		
t _{PHZ}	Output Disable	0.8	7.9	ns	
t _{PLZ}	Time	0.8	6.2		

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{\rm CC} = 0V$
C _{OUT} (Note 6)	Output Capacitance	9.0	pF	$V_{\rm CC} = 5.0 V$

Note 6: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +44 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.