July 1998

54ABT240 Octal Buffer/Line Driver with TRI-STATE Outputs

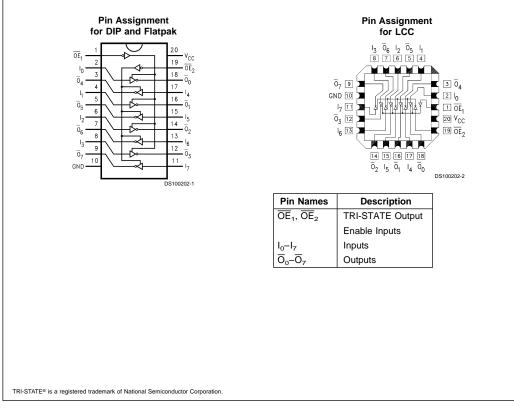
National Semiconductor

54ABT240 Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

The 'ABT240 is an inverting octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9318801


Features

Output sink capability of 48 mA, source capability of 24 mA

Ordering Code

Military	Package Number	Package Description
54ABT240J-QML	J20A	20-Lead Ceramic Dual-In-Line
54ABT240W-QML	W20A	20-Lead Cerpack
54ABT240E-QML	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Connection Diagrams

Truth Tables

Inp	uts	Outputs		
OE ₁	l _n	(Pins 12, 14, 16, 18)		
L	L	Н		
L	Н	L		
н	х	Z		
Inp	uts	Outputs		
Inp OE ₂	uts I _n	Outputs (Pins 3, 5, 7, 9)		
· · ·		-		
· ·		(Pins 3, 5, 7, 9)		

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	–0.5V to $V_{\rm CC}$

Current Applied to Output in LOW State (Max) DC Latchup Source Current (Across Comm Operating Range)	twice the rated I_{OL} (mA) –150 mA
Over Voltage Latchup (I/O)	10V
Recommended Ope Conditions	rating
Free Air Ambient Temperature Military	-55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V/\Delta t)$
Data Input	

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

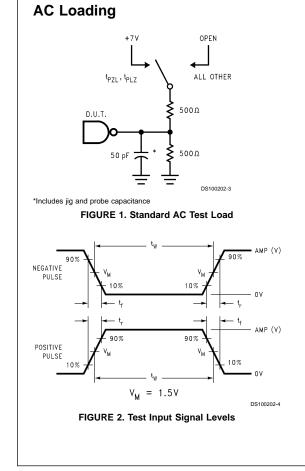
Enable Input

DC Electrical Characteristics

Symbol	Para	ameter		ABT240	1	Units	Vcc	Conditions
			Min	Тур	Max	1		
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vol	tage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{OH} = -3 mA
		54ABT	2.0			V	Min	I _{OH} = -24 mA
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
IIH	Input HIGH Current				5	μΑ	Max	V _{IN} = 2.7V (Note 4)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Bre	eakdown Test			7	μΑ	Max	V _{IN} = 7.0V
IIL	Input LOW Current				-5	μΑ	Max	V _{IN} = 0.5V (Note 4)
					-5			$V_{IN} = 0.0V$
VID	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Currer	nt			50	μΑ	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Currer	nt			-50	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
los	Output Short-Circuit Cu	urrent	-100		-275	mA	Max	V _{OUT} = 0.0V
ICEX	Output High Leakage C	Current			50	μΑ	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current				50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				50	μΑ	Max	$\overline{OE}_n = V_{CC};$
								All Others at V _{CC} or Ground
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			1.5	mA	Max	$V_{I} = V_{CC} - 2.1V$
		Outputs TRI-STATE			1.5	mA		Enable Input V _I = V _{CC} - 2.1V
		Outputs TRI-STATE			50	μA		Data Input V _I = V _{CC} – 2.1V
								All Others at V _{CC} or Ground
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open
	(Note 4)				0.1	MHz		$\overline{OE}_n = GND$, (Note 3)
								One Bit Toggling, 50% Duty Cycle

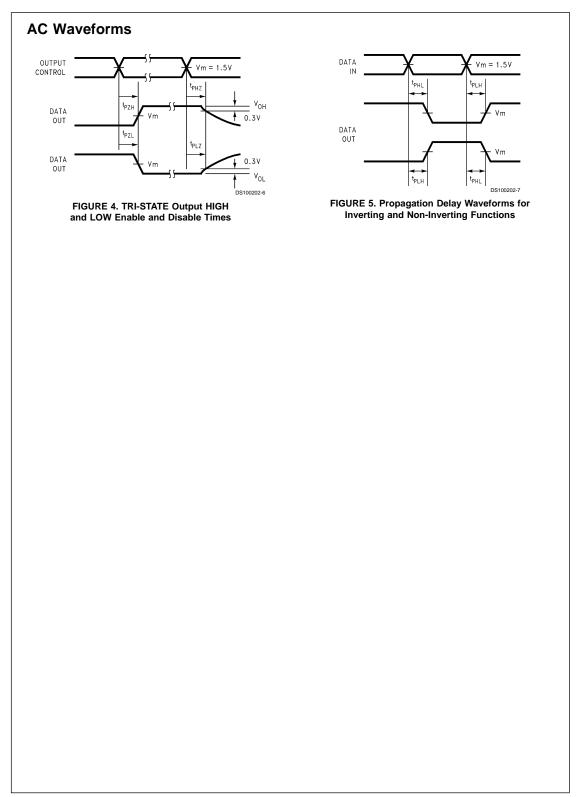
Note 3: For 8 bits toggling, I_{CCD} < 0.8 mA/MHz.

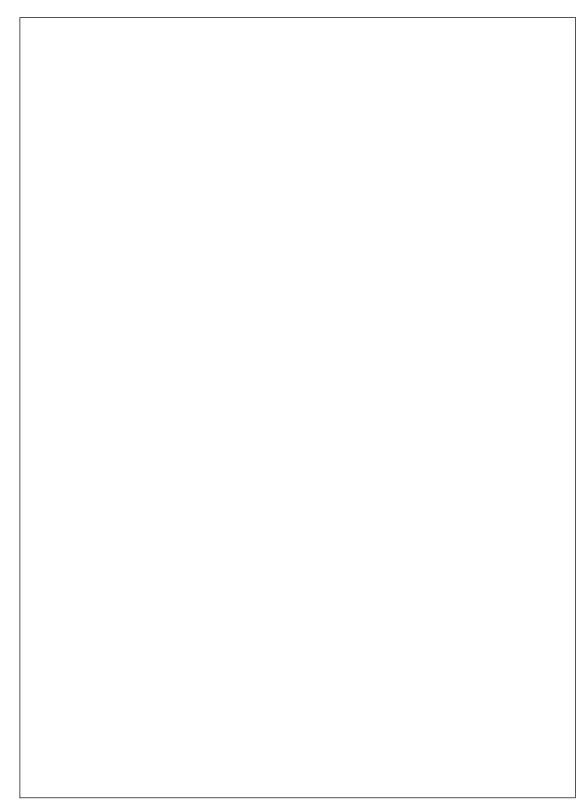
Note 4: Guaranteed, but not tested.

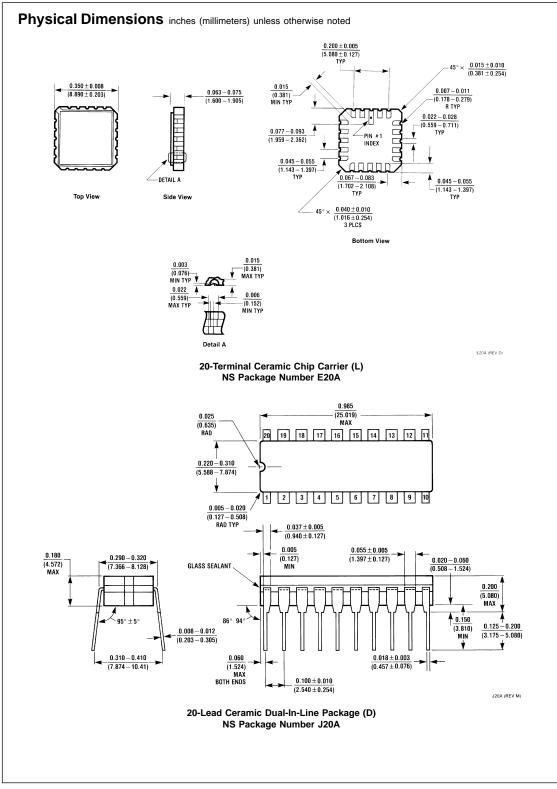

20 mV/ns

Symbol	Parameter	54/	ABT	Units	Fig.
		T _A = -55°C	C to +125°C]	No.
		$V_{CC} = 4.5V-5.5V$ $C_L = 50 \text{ pF}$			
		Min	Max		
t _{PLH}	Propagation Delay	0.8	5.5	ns	Figure 5
t _{PHL}	Data to Outputs	1.0	5.5		
t _{PZH}	Output Enable	0.8	7.5	ns	Figure 4
t _{PZL}	Time	0.8	7.7		
t _{PHZ}	Output Disable	1.0	7.5	ns	Figure 4
t _{PLZ}	Time	1.0	7.2		

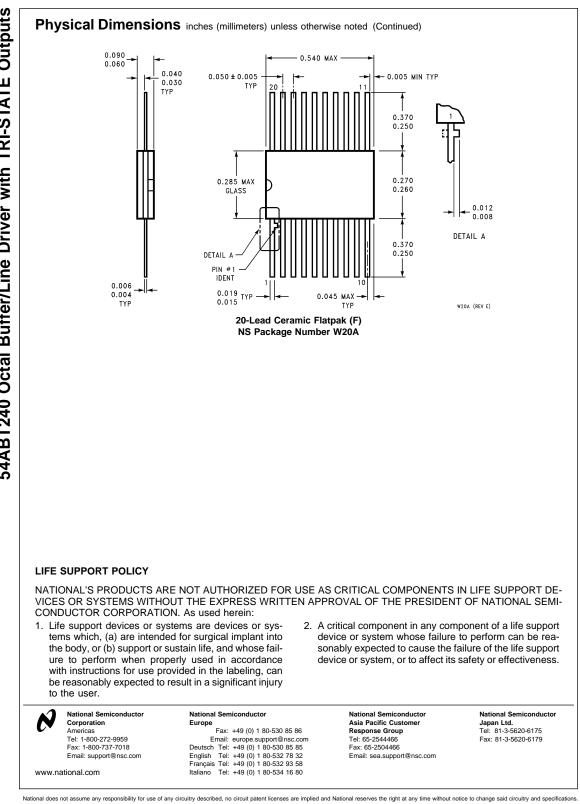
Capacitance


Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{\rm CC} = 0V$
C _{OUT} (Note 5)	Output Capacitance	9.0	pF	V _{CC} = 5.0V


Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.



Amplitude	Rep. Rate	tw	tr	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns


FIGURE 3. Test Input Signal Requirements

7

