54ABT16500 18-Bit Universal Bus Transceivers with TRI-STATE Outputs

July 1998

🗙 National Semiconductor

54ABT16500 18-Bit Universal Bus Transceivers with TRI-STATE® Outputs

_

General Description

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and \overline{OEBA}), latch-enable (LEAB and LEBA), and clock (\overline{CLKAB} and \overline{CLKBA}) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if \overline{CLKAB} is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition of \overline{CLKAB} . Output-enable OEAB is active-high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses \overline{OEBA} , LEBA, and \overline{CLKBA} . The output enables are complementary (OEAB is active high and \overline{OEBA} is active low).

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Features

- Combines D-Type latches and D-Type flip-flops for operation in transparent, latched, or clocked mode
- Flow-through architecture optimizes PCB layout
- Guaranteed latch-up protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9687001

Ordering Code

Military	Package Number	Package Description
54ABT16500W-QML	WA56A	56-Lead Cerpack

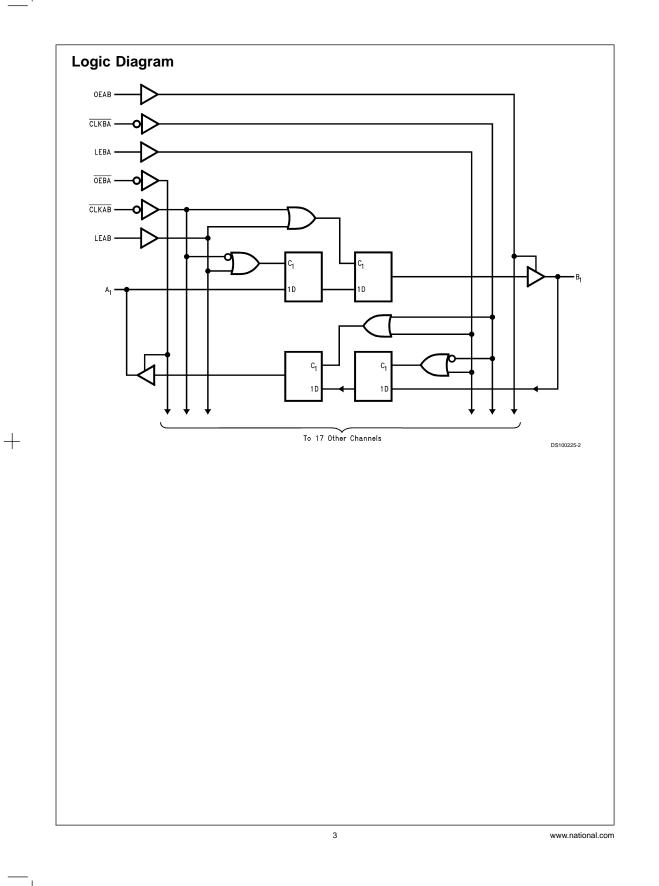
TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1998 National Semiconductor Corporation DS100225

1

Function Table (Note 1)

+


	Inp	Output		
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Х	Z
н	Н	Х	L	L
н	н	Х	н	н
н	L	\downarrow	L	L
н	L	\downarrow	н	н
н	L	н	Х	B ₀ (Note 2)
н	L	L	Х	B ₀ (Note 3)

Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

Note 2: Output level before the indicated steady-state input conditions were established.

Note 3: Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

www.national.com

Absolute Maximum Ratings (Note 4)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 4)	-0.5V to +7.0V
Input Current (Note 4)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-off State	-0.5V to 5.5V
in the HIGH State	–0.5V to $V_{\rm CC}$
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
DC Latchup Source Current	–500 mA

Over Voltage Latchup (I/O)

+

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	–55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Note 4: Absolute maximum ratings are values bey be damaged or have its useful life impaired. Function conditions is not implied.	,
Note 5: Either voltage limit or current limit is sufficient	cient to protect inputs.

10V

DC Electrical Characteristics

Symbol	Parameter		A	BT1650	0	Units	V _{cc}	Conditions
			Min Typ Max		Max			
V _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	$I_{OH} = -3 \text{ mA}$
		54ABT	2.0			V	Min	$I_{OH} = -24 \text{ mA}$
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
Iн	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 6)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Breakdown Test				7	μA	Max	V _{IN} = 7.0V
IIL	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 6)
					-5			$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{IH} +	Output Leakage Current				50	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}, OE = 2.0V$
I _{OZH}								
I _{IL} +	Output Leakage Current				-50	μA	0 – 5.5V	V _{OUT} = 0.5V; OE, OE = 2.0V
I _{OZL}								
l _{os}	Output Short-Circuit Current		-100		-275	mA	Max	V _{OUT} = 0V
I _{CEX}	Output High Leakage Current				50	μA	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current				1.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				68	μA	Max	An or Bn Outputs Low
I _{ccz}	Power Supply Current				1.0	mA	Max	$\overline{OE}_n = V_{CC},$
								All Others at V _{CC} or GND
I _{сст}	Additional I _{CC} /Input				2.5	mA	Max	$V_{I} = V_{CC} - 2.1V$
								All Others at V _{CC} or GND
ССD	Dynamic I _{CC} No	Load				mA/	Max	Outputs Open
	(Note 6)				0.23	MHz		Transparent Mode
								One Bit Toggling, 50% Duty Cycle

Note 6: Guaranteed, but not tested.

www.national.com

+

DC Electrical Characteristics								
Symbol	Parameter	Min	Max	Units	V _{cc}	Conditions C _L = 50 pF; R _L = 500Ω		
VOLP	Quiet Output Maximum Dynamic V _{OL}		1.1	V	5.0	$T_A = 25^{\circ}C$ (Note 7)		
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-1.7	V	5.0	$T_A = 25^{\circ}C$ (Note 7)		

Note 7: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	54/	ABT	Units	Fig.
		~	C to +125°C .5V−5.5V		No.
		C _L =	50 pF		
		Min	Max		
f _{max}	Maximum Clock Frequency	150		MHz	
t _{PLH}	Propagation Delay	1.0	6.5	ns	Figure 4
t _{PHL}	A or B to B or A	1.0	7.0		
t _{PLH}	Propagation Delay	1.0	7.0	ns	Figure 4
t _{PHL}	LEAB or LEBA to B or A	1.0	7.8		
t _{PLH}	Propagation Delay	1.0	7.5	ns	Figure 4
t _{PHL}	CLKAB or CLKBA to B or A	1.0	8.0		
t _{PZH}	Propagation Delay	1.0	6.3	ns	Figure 6
t _{PZL}	OEAB or OEBA to B or A	1.0	6.5		
t _{PHZ}	Propagation Delay	1.0	7.2	ns	Figure 6
t _{PLZ}	OEAB or OEBA to B or A	1.0	6.8		

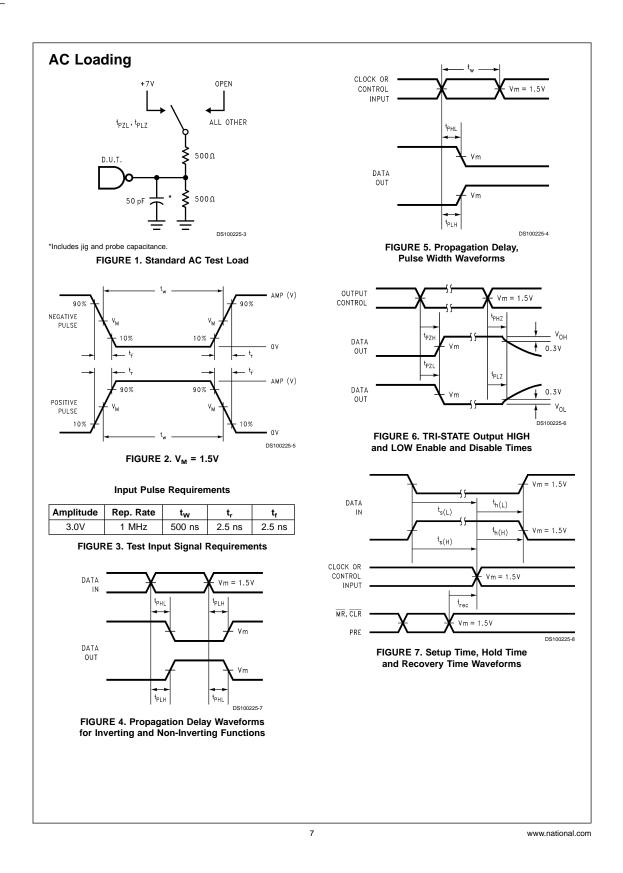
AC Operating Requirements

+

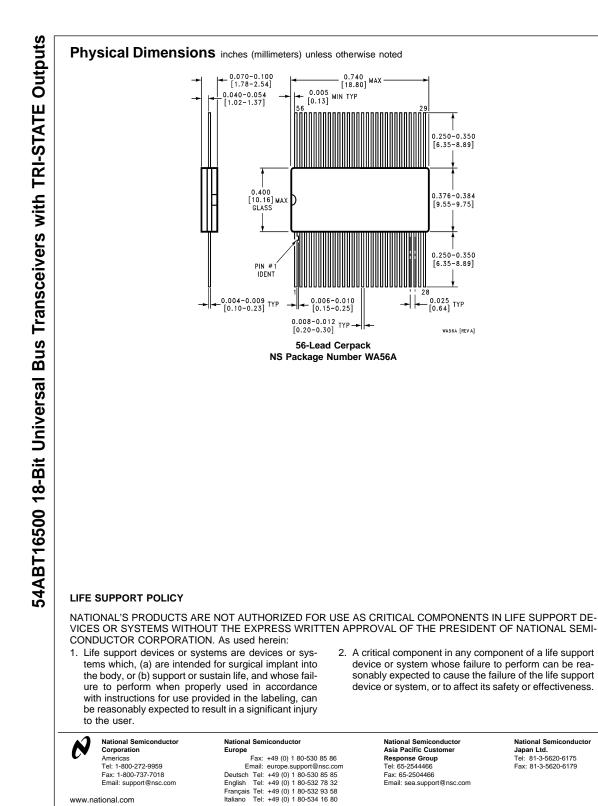
Symbol	Parameter	T _A = -55°(ABT C to +125°C .5V–5.5V	Units	Fig. No.
			50 pF		
		Min	Max	-	
t _s (H)	Setup Time,	4.5		ns	Figure 7
t _s (L)	A to CLKAB	4.5			
t _h (H)	Hold Time,	0		ns	Figure 7
t _h (L)	A to CLKAB	0			
t _s (H)	Setup Time,	4.0		ns	Figure 7
t _s (L)	B to CLKBA	4.0			
t _h (H)	Hold Time,	0		ns	Figure 7
t _h (L)	B to CLKBA	0			
t _s (H)	Setup Time, A to LEAB	1.5		ns	Figure 7
t _s (L)	or B to LEBA, CLK High	1.5			
t _h (H)	Hold Time, A to LEAB	1.5		20	Figure 7
t _h (L)	or B to LEBA, CLK High	1.5		ns	
t _s (H)	Setup Time, A to LEAB	4.5		ns	Figure 7
t _s (L)	or B to LEBA, CLK Low	4.5			
t _h (H)	Hold Time, A to LEAB	1.5		ns	Figure 7
t _h (L)	or B to LEBA, CLK Low	1.5			
t _w (H)	Pulse Width,	3.3		ns	Figure 5
t _w (L)	LEAB or LEBA, High	3.3			

5

Symbol	Parameter	54	ABT	Units	Fig.
		$T_{A} = -55^{\circ}$	C to +125°C		No.
		V _{cc} = 4	.5V–5.5V		
	$C_{L} = 50 \text{ pF}$				
		Min	Max	7	
t _w (H)	Pulse Width, CLKAB	3.3		ns	Figure 5
t _w (L)	or CLKBA, High or Low	3.3			


Capacitance

+


Symbol	Parameter	Тур	Units	Conditions, T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{\rm CC} = 0.0 V$
C _{I/O} (Note 8)	Output Capacitance	11.0	pF	$V_{\rm CC} = 5.0 V$

Note 8: C_{I/O} is measured at frequency f = 1 MHz per MIL-STD-883B, Method 3012.

www.national.com

+

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Email: sea.support@nsc.com

www.national.com

Email: support@nsc.com

+

8

PrintDate=1998/07/14 PrintTime=11:08:56 43605 ds100225 Rev. No. 1 cmserv Proof

8

Book

Extract End

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.