

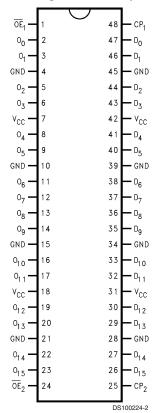
54ABT16374

16-Bit D Flip-Flop with TRI-STATE® Outputs

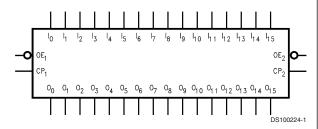
General Description

The ABT16374 contains sixteen non-inverting D flip-flops with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (\overline{OE}) are common to each byte and can be shorted together for full 16-bit operation.

Features


- Separate control logic for each byte
- 16-bit version of the ABT374
- Edge-triggered D-type inputs
- Buffered Positive edge-triggered clock
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Guaranteed latch-up protection
- Standard Microcircuit Drawing (SMD) 5962-9320101

Ordering Code:


Commercial	Package	Package Description
	Number	
54ABT16374W-QML	WA48A	48-Lead Cerpack

Connection Diagram

Pin Assignment for Cerpack

Logic Symbol

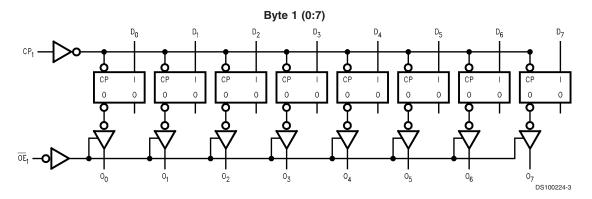
Pin Description

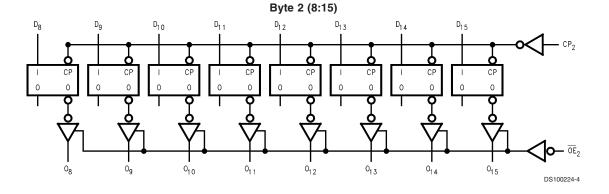
Pin	Description			
Names				
ŌĒn	TRI-STATE Output Enable Input (Active Low)			
CP _n	Clock Pulse Input (Active Rising Edge)			
D ₀ -D ₁₅	Data Inputs			
O ₀ -O ₁₅	TRI-STATE Outputs			

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Functional Description

The ABT16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable $(\overline{\text{OE}}_n)$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\text{OE}}_n$ is HIGH, the outputs go to the high impedance state. Operation of the OE_n input does not affect the state of the flip-flops.


Truth Tables


	Inputs	Outputs	
CP ₁	ŌE ₁	D_0-D_7	O ₀ -O ₇
N	L	Н	Н
N	L	L	L
L	L	X	(Previous)
Х	Н	X	Z

	Inputs		Outputs
CP ₂	OE ₂	D ₈ -D ₁₅	O ₈ -O ₁₅
N	L	Н	Н
N	L	L	L
L	L	X	(Previous)
X	Н	X	Z

- H = High Voltage Level
- L = Low Voltage Level
- X = Immaterial
- Z = High Impedance

Logic Diagrams

www.national.com

Absolute Maximum Ratings (Note 1)

Storage Temperature -65°C to $+150^{\circ}\text{C}$ Ambient Temperature under Bias -55°C to $+125^{\circ}\text{C}$

Junction Temperature under Bias

Ceramic -55°C to +175°C

 $\ensuremath{V_{\text{CC}}}$ Pin Potential to

 $\begin{array}{lll} \mbox{Ground Pin} & -0.5 \mbox{V to } +7.0 \mbox{V} \\ \mbox{Input Voltage (Note 2)} & -0.5 \mbox{V to } +7.0 \mbox{V} \\ \mbox{Input Current (Note 2)} & -30 \mbox{ mA to } +5.0 \mbox{ mA} \\ \end{array}$

Voltage Applied to Any Output

in the Disabled or

Power-Off State -0.5 V to 5.5 V in the HIGH State $-0.5 \text{V to } \text{V}_{\text{CC}}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

DC Latchup Source Current:

ŌĒ Pin −350 mA

(Across Comm Operating Range)

Other Pins -500 mA
Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature

Military -55° C to $+125^{\circ}$ C

Supply Voltage

 $\begin{array}{lll} \mbox{Military} & +4.5\mbox{V to } +5.5\mbox{V} \\ \mbox{Minimum Input Edge Rate} & (\Delta\mbox{V}/\Delta\mbox{t}) \\ \mbox{Data Input} & 50 \mbox{ mV/ns} \\ \mbox{Enable Input} & 20 \mbox{ mV/ns} \\ \mbox{Clock Input} & 100\mbox{mV/ns} \\ \end{array}$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parar	neter	Al	ABT16374		Units	V _{cc}	Conditions
			Min	Тур	Max			
V _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	$I_{OH} = -3 \text{ mA}$
		54ABT	2.0			V	Min	$I_{OH} = -24 \text{ mA}$
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
I _{IH}	Input HIGH Current				5	μΑ	Max	$V_{IN} = 2.7V$ (Note 4)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current B	reakdown Test			7	μA	Max	$V_{IN} = 7.0V$
I _{IL}	Input LOW Current				-5	μA	Max	$V_{IN} = 0.5V$ (Note 4)
					-5			$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
								All Other Pins Grounded
I _{OZH}	Output Leakage Curre	ent			50	μA	0-5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$
l _{OZL}	Output Leakage Curre	ent			-50	μA	0-5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$
los	Output Short-Circuit C	Current	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output High Leakage	Current			50	μA	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				100	μA	0.0	$V_{OUT} = 5.5V$; All Others V_{CC} or GND
Іссн	Power Supply Current	t			2.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current	t			62	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current	t			2.0	mA	Max	$\overline{OE} = V_{CC}$; All Others at V_{CC} or GND
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs TRI-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
		Outputs TRI-STATE			2.5	mA		Data Input $V_I = V_{CC} - 2.1V$
								All Others at V _{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open
	(Note 4)				0.30	MHz		$\overline{OE} = GND$, (Note 3)
								One Bit Toggling, 50% Duty Cycle

Note 3: For 8-bit toggling, I_{CCD} < 0.8 mA/MHz.

Note 4: Guaranteed, but not tested.

DC Electrical Characteristics

Symbol	Parameter	Min	Max	Units	V _{cc}	Conditions $C_{L} = 50 \text{ pF},$ $R_{I} = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		1.1	V	5.0	$T_A = 25^{\circ}C \text{ (Note 5)}$
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-0.45	V	5.0	$T_A = 25^{\circ}C(Note 5)$

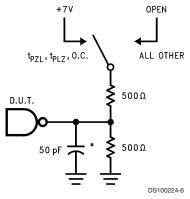
 $\textbf{Note 5:} \ \ \text{Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. One output at LOW.}$

AC Electrical Characteristics

Symbol	Parameter	$54ABT$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$		Units	
		Min	Max		
f _{max}	Max Clock	150		MHz	
	Frequency				
t _{PLH}	Propagation Delay	1.5	6.9	ns	
t _{PHL}	CP to O _n	1.5	6.9		
t _{PZH}	Output Enable Time	0.8	6.5	ns	
t_{PZL}		1.2	6.5		
t _{PHZ}	Output Disable Time	1.5	9.6	ns	
t_{PLZ}		1.5	7.2		

AC Operating Requirements

Symbol	Parameter	$T_A = -55^{\circ}$ $V_{CC} = 4$.	ABT C to +125°C 5V to 5.5V 50 pF	Units
		Min	Max	
t _s (H)	Setup Time, HIGH	1.3		ns
t _s (L)	or LOW D _n to CP	1.3		
t _h (H)	Hold Time, HIGH	1.5		ns
t _h (L)	or LOW D _n to CP	1.5		
t _w (H)	Pulse Width, CP	3.3		ns
t _w (L)	HIGH or LOW	3.3		


Capacitance

Symbol	Parameter	Тур	Units	Conditions (T _A = 25°C)
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 6)	Output Capacitance	11.0	pF	$V_{CC} = 5.0V$

Note 6: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

www.national.com

AC Loading

^{*}Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

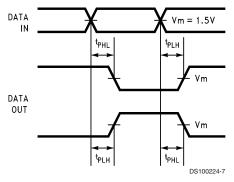


FIGURE 2. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

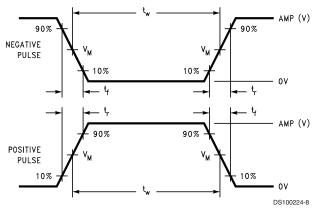


FIGURE 3. Test Input Pulse Requirements

Amplitude	Rep Rate	t _w	t _r	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 4. Test Input Signal Requirements

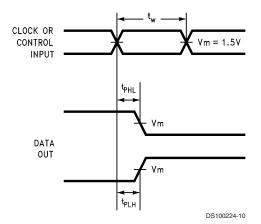


FIGURE 5. Propagation Delay, Pulse Width Waveforms

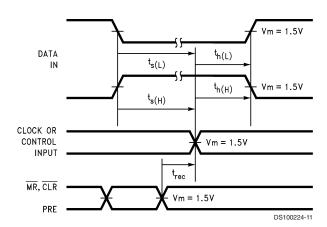


FIGURE 6. Setup Time, Hold Time and Recovery Time Waveforms

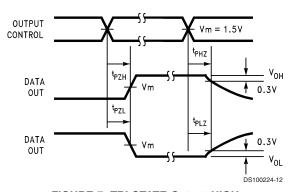
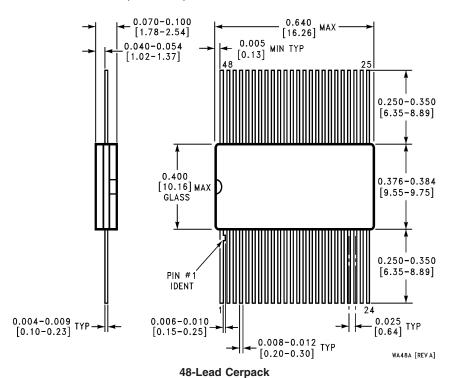



FIGURE 7. TRI-STATE Output HIGH and LOW Enable and Disable Times

5 www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted

NS Package Number WA48A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com

Email: new.feedback@nsc.ce Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560