

Connection Diagrams

Logic Diagram

Truth Table

Inputs		Outputs
Dn	$\overline{\text { OEN }}$	Qn
L	L	L
H	L	H
X	H	Cutoff

H = HIGH Voltage Level
L = LOW Voltage Level
Cutoff = Lower-than-LOW State
X = Don't Care

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Above which the useful life may be impaired
Storage Temperature ($\mathrm{T}_{\text {STG }}$)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Ceramic
$+175^{\circ} \mathrm{C}$
$V_{\text {EE }}$ Pin Potential to
Ground Pin
-7.0 V to +0.5 V
Input Voltage (DC)
V_{EE} to +0.5 V
$-100 \mathrm{~mA}$
Output Current (DC Output HIGH)
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE}) -5.7 V to -4.2 V
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\text { Min })} \end{aligned}$	Loading with 25Ω to -2.0V	(Notes 3, 4, 5)
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ \text { or } \mathrm{V}_{\mathrm{IL}(\text { Max })} \end{array}$	Loading with 25Ω to -2.0V	(Notes 3,$4,5)$
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLZ }}$	Cut-Off LOW Voltage		-1950	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {IN }}=V_{I H(\text { Min }), \text { or }} \\ & V_{I L(\text { Max })} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{OEN}} \\ & =\mathrm{HIGH} \end{aligned}$	$\begin{gathered} \text { (Notes } 3, \\ 4,5) \end{gathered}$
			-1850		$-55^{\circ} \mathrm{C}$			
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH signal for All inputs		1, 2, 3, 4
V_{IL}	Input LOW Voltage	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW signal for All inputs		(Notes 3, $4,5,6)$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$		$\begin{gathered} (\text { Notes } 3, \\ 4,5) \end{gathered}$
I_{IH}	Input HIGH Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \end{aligned}$		$\begin{gathered} \text { (Notes 3, } \\ 4,5) \end{gathered}$
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$			
$\mathrm{I}_{\text {EE }}$	Power Supply Current	$\begin{aligned} & -145 \\ & -150 \end{aligned}$	-55	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$		$\begin{gathered} (\text { Notes } 3, \\ 4,5) \end{gathered}$

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 6: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{c}}+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Dn to Output	0.30	2.60	0.50	2.40	0.50	2.70	ns	Figures 1, 2	$\begin{aligned} & \text { (Notes 7, } \\ & 8,10,11 \text {) } \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Propagation Delay	1.20	4.40	1.40	4.20	1.20	4.40	ns	Figures 1, 2	(Notes 7,
$\mathrm{t}_{\mathrm{PHZ}}$	$\overline{\mathrm{OEN}}$ to Output	0.70	3.00	0.70	2.80	0.70	3.20			8, 9, 11)

AC Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{c}}+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.40	2.40	0.40	2.70	ns	Figures 1, 2	(Note 10)

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 8: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 10: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 11: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 25Ω to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

Switching Waveforms

Note:
The output AC measurement point for cut-off propagation delay
testing $=$ the 50% voltage point between active V_{OL} and V_{OH}.
FIGURE 2. Propagation Delay, Cut-Off and Transition Times
\square

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Ceramic Dual-In-Line Package (0.400" Wide) (D) NS Package Number J24E

W24B (REV D)
24-Lead Quad Cerpak (F)
NS Package Number W24B

\begin{abstract}
100352 Low Power 8-Bit Buffer with Cut-Off Drivers

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

