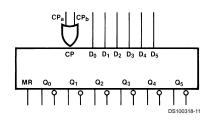
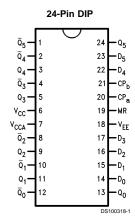


# 100351 Low Power Hex D Flip-Flop

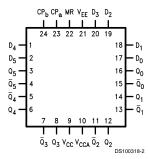

## **General Description**

The 100351 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs ( ${\rm CP_a}$  and  ${\rm CP_b}$ ) and common Master Reset (MR) input. Data enters a master when both CP<sub>a</sub> and CP<sub>b</sub> are LOW and transfers to the slave when CP<sub>a</sub> and CP<sub>b</sub> (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50  $\mbox{k}\Omega$ pull-down resistors.

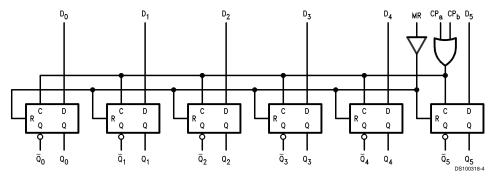
#### **Features**


- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9457901

## **Logic Symbol**




| Pin Names                                                           | Description                     |
|---------------------------------------------------------------------|---------------------------------|
| $D_0 - D_5$                                                         | Data Inputs                     |
| D <sub>0</sub> -D <sub>5</sub><br>CP <sub>a</sub> , CP <sub>b</sub> | Common Clock Inputs             |
| MR                                                                  | Asynchronous Master Reset Input |
| $Q_0-Q_5$                                                           | Data Outputs                    |
| $\overline{Q}_0 - \overline{Q}_5$                                   | Complementary Data Outputs      |


## **Connection Diagrams**



#### 24-Pin Quad Cerpak



## **Logic Diagram**



## Truth Tables (Each Flip-flop)

# **Synchronous Operation**

|                | Outputs |     |     |                      |
|----------------|---------|-----|-----|----------------------|
| D <sub>n</sub> | CPa     | СРь | MR  | Q <sub>n</sub> (t+1) |
| L              | ~       | L   | L   | L                    |
| н              | ~       | L   | L   | Н                    |
| L              | L       | ~   | L   | L                    |
| Н              | L       | ~   | L   | н                    |
| Х              | Н       | ~   | L   | Q <sub>n</sub> (t)   |
| X              | ~       | Н   | L   | Q <sub>n</sub> (t)   |
| l x            | l ı     | l 1 | l 1 | Q_(t)                |

## **Asynchronous Operation**

|                | Inp             | Outputs |    |                      |
|----------------|-----------------|---------|----|----------------------|
| D <sub>n</sub> | CP <sub>a</sub> | СРь     | MR | Q <sub>n</sub> (t+1) |
| Х              | Х               | Х       | Н  | L                    |

H = HIGH Voltage Level

n = niGn Voltage Level

X = Don't Care

t = Time before CP positive transition

+1 = Time after CP positive transition

✓ = LOW-to-HIGH transition

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impaired

Storage Temperature  $(T_{STG})$ -65°C to +150°C

Maximum Junction Temperature (T<sub>J</sub>)

+175°C Ceramic V<sub>EE</sub> Pin Potential to Ground Pin -7.0V to +0.5VInput Voltage (DC)  $V_{\text{EE}}$  to +0.5V

Output Current (DC Output HIGH) -50 mA

ESD (Note 2)

≥2000V

#### **Recommended Operating Conditions**

Case Temperature (T<sub>C</sub>)

Military -55°C to +125°C -5.7V to -4.2V Supply Voltage  $(V_{EE})$ 

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation

under these conditions is not implied. Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

## **Military Version**

#### **DC Electrical Characteristics**

 $V_{EE}$  = -4.2V to -5.7V,  $V_{CC}$  =  $V_{CCA}$  = GND,  $T_{C}$  = -55°C to +125°C

| Symbol           | Parameter                      | Min   | Max   | Units | T <sub>C</sub> | Conditions                              |                 | Notes           |
|------------------|--------------------------------|-------|-------|-------|----------------|-----------------------------------------|-----------------|-----------------|
| V <sub>OH</sub>  | Output HIGH Voltage            | -1025 | -870  | mV    | 0°C to         | V <sub>IN</sub> = V <sub>IH</sub> (Max) | Loading with    | (Notes 3, 4, 5) |
|                  |                                |       |       |       | +125°C         | or V <sub>IL</sub> (Min)                | 50Ω to –2.0V    |                 |
|                  |                                | -1085 | -870  | mV    | −55°C          |                                         |                 |                 |
| V <sub>OL</sub>  | Output LOW Voltage             | -1830 | -1620 | mV    | 0°C to         |                                         |                 |                 |
|                  |                                |       |       |       | +125°C         |                                         |                 |                 |
|                  |                                | -1830 | -1555 | mV    | −55°C          |                                         |                 |                 |
| V <sub>OHC</sub> | Output HIGH Voltage            | -1035 |       | mV    | 0°C to         | V <sub>IN</sub> = V <sub>IH</sub> (Min) | Loading with    | (Notes 3, 4, 5) |
|                  |                                |       |       |       | +125°C         | or V <sub>IL</sub> (Max) 50Ω to –2.0    |                 |                 |
|                  |                                | -1085 |       | mV    | −55°C          |                                         |                 |                 |
| V <sub>OLC</sub> | Output LOW Voltage             |       | -1610 | mV    | 0°C to         |                                         |                 |                 |
|                  |                                |       |       |       | +125°C         |                                         |                 |                 |
|                  |                                |       | -1555 | mV    | −55°C          |                                         |                 |                 |
| V <sub>IH</sub>  | Input HIGH Voltage             | -1165 | -870  | mV    | −55°C to       |                                         |                 | (Notes 3, 4, 5, |
|                  |                                |       |       |       | +125°C         |                                         |                 |                 |
| V <sub>IL</sub>  | Input LOW Voltage              | -1830 | -1475 | mV    | −55°C to       | Guaranteed LOW                          | (Notes 3, 4, 5, |                 |
|                  |                                |       |       |       | +125°C         | for All Inputs                          |                 |                 |
| I <sub>IL</sub>  | Input LOW Current              | 0.50  |       | μΑ    | −55°C to       | V <sub>EE</sub> = -4.2V                 | (Notes 3, 4, 5) |                 |
|                  |                                |       |       |       | +125°C         | $V_{IN} = V_{IL} (Min)$                 |                 |                 |
| I <sub>IH</sub>  | Input HIGH Current             |       |       |       |                | $V_{EE} = -5.7V$                        |                 | (Notes 3, 4, 5) |
|                  | CP, MR                         |       | 350   | μA    | 0°C to         | $V_{IN} = V_{IH} (Max)$                 |                 |                 |
|                  | D <sub>0</sub> -D <sub>5</sub> |       | 240   |       | +125°C         |                                         |                 |                 |
|                  | CP, MR                         |       | 500   | μA    | −55°C          | ]                                       |                 |                 |
|                  | D <sub>0</sub> -D <sub>5</sub> |       | 340   |       |                |                                         |                 |                 |
| I <sub>EE</sub>  | Power Supply Current           | -135  | -50   | mA    | −55°C to       | Inputs Open                             |                 | (Notes 3, 4, 5) |
|                  |                                |       |       |       | +125°C         |                                         |                 |                 |

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

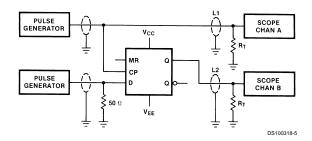
Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing VOH/VOL

### **AC Electrical Characteristics**

 $V_{\rm EE}$  = -4.2V to -5.7V,  $V_{\rm CC}$  =  $V_{\rm CCA}$  = GND

| Symbol              | Parameter                                   | ameter $T_c = -55^{\circ}C$ $T_c = +25^{\circ}C$ $T_c = +125^{\circ}C$ |      | -125°C | Units | Conditions | Notes |     |              |                 |
|---------------------|---------------------------------------------|------------------------------------------------------------------------|------|--------|-------|------------|-------|-----|--------------|-----------------|
|                     |                                             | Min                                                                    | Max  | Min    | Max   | Min        | Max   | 1   |              |                 |
| f <sub>max</sub>    | Toggle Frequency                            | 375                                                                    |      | 375    |       | 375        |       | MHz | Figures 2, 3 | (Note 10)       |
| t <sub>PLH</sub>    | Propagation Delay                           | 0.40                                                                   | 2.40 | 0.50   | 2.20  | 0.50       | 2.60  | ns  | Figures 1, 3 |                 |
| $t_{PHL}$           | CP <sub>a</sub> , CP <sub>b</sub> to Output |                                                                        |      |        |       |            |       |     |              | (Notes 7, 8, 9) |
| t <sub>PLH</sub>    | Propagation Delay                           | 0.60                                                                   | 2.70 | 0.70   | 2.60  | 0.80       | 2.90  | ns  | Figures 1, 4 |                 |
| $t_{PHL}$           | MR to Output                                |                                                                        |      |        |       |            |       |     |              |                 |
| t <sub>TLH</sub>    | Transition Time                             | 0.20                                                                   | 1.60 | 0.20   | 1.60  | 0.20       | 1.60  | ns  | Figures 1, 3 | (Note 10)       |
| $t_{THL}$           | 20% to 80%, 80% to 20%                      |                                                                        |      |        |       |            |       |     |              |                 |
| t <sub>s</sub>      | Setup Time                                  |                                                                        |      |        |       |            |       |     |              |                 |
|                     | D <sub>0</sub> -D <sub>5</sub>              | 0.90                                                                   |      | 0.80   |       | 0.90       |       | ns  | Figure 5     |                 |
|                     | MR (Release Time)                           | 1.60                                                                   |      | 1.80   |       | 2.60       |       |     | Figure 4     |                 |
| t <sub>h</sub>      | Hold Time                                   | 1.50                                                                   |      | 1.40   |       | 1.60       |       | ns  | Figure 5     |                 |
|                     | D <sub>0</sub> -D <sub>5</sub>              |                                                                        |      |        |       |            |       |     |              |                 |
| t <sub>pw</sub> (H) | Pulse Width HIGH                            | 2.00                                                                   |      | 2.00   |       | 2.00       |       | ns  | Figures 3, 4 |                 |
|                     | CP <sub>a</sub> , CP <sub>b</sub> , MR      |                                                                        |      |        |       |            |       |     |              |                 |

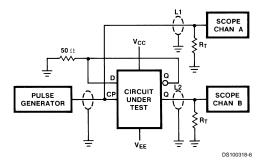

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C, Temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each Mfg. lot at +25°C, Subgroup A9, and at +125°C, and -55°C Temperature, Subgroups A10 and A11.

Note 10: Not tested at +25°C, +125°C and -55°C Temperature (design characterization data).

#### **Test Circuitry**




#### Notes:

V<sub>CC</sub>, V<sub>CA</sub> = +2V, V<sub>EE</sub> = -2.5V L1 and L2 = equal length  $50\Omega$  impedance lines R<sub>T</sub> =  $50\Omega$  terminator internal to scope Decoupling 0.1  $\mu$ F from GND to V<sub>CC</sub> and V<sub>EE</sub> All unused outputs are loaded with  $50\Omega$  to GND C<sub>L</sub> = Fixture and stray capacitance  $\leq$  3 pF

FIGURE 1. AC Test Circuit

# Test Circuitry (Continued)



#### Notes

V<sub>CC</sub>, V<sub>CCA</sub> = +2V, V<sub>EE</sub> = −2.5V L1 and L2 = equal length  $50\Omega$  impedance lines R<sub>T</sub> =  $50\Omega$  terminator internal to scope Decoupling 0.1 μF from GND to V<sub>CC</sub> and V<sub>EE</sub> All unused outputs are loaded with  $50\Omega$  to GND C<sub>L</sub> = Jig and stray capacitance ≤ 3 pF

FIGURE 2. Toggle Frequency Test Circuit

# **Switching Waveforms**

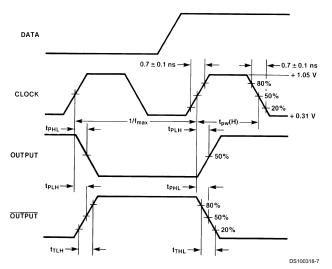
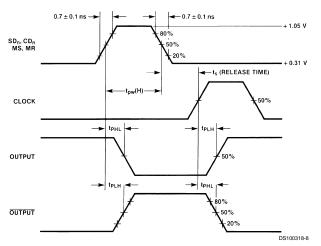
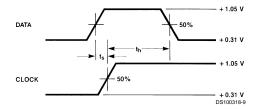
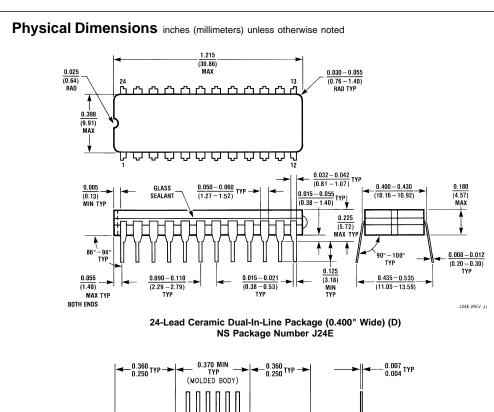
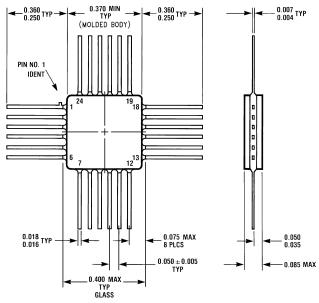



FIGURE 3. Propagation Delay (Clock) and Transition Times

# Switching Waveforms (Continued)



FIGURE 4. Propagation Delay (Reset)




#### Notes:

t<sub>b</sub> is the minimum time before the transition of the clock that information must be present at the data input. t<sub>b</sub> is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 5. Setup and Hold Time





24-Lead Quad Cerpak (F) NS Package Number W24B

W24B (REV D)

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor Corporation Americas Tel: 1-800-272-9959

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tei: +49 (0) 1 80-530 85 85
English Tei: +49 (0) 1 80-532 78 32
Français Tei: +49 (0) 1 80-532 35
Italiano Tei: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com

 fic Customer
 Japan Ltd.

 g Group
 Tel: 81-3-5620-6175

 44466
 Fax: 81-3-5620-6179

 504466
 Fax: 81-3-5620-6179

National Semiconductor