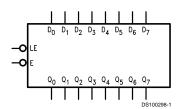


August 1998

### 100343

## Low Power 8-Bit Latch

### **General Description**


The 100343 contains eight D-type latches, individual inputs,  $(D_n),$  outputs  $(Q_n),$  a common enable pin  $(\overline{E}),$  and a latch enable pin  $(\overline{LE}).$  A Q output follows its D input when both  $\overline{E}$  and  $\overline{LE}$  are LOW. When either  $\overline{E}$  or  $\overline{LE}$  (or both) are HIGH, a latch stores the last valid data present on its D input prior to  $\overline{E}$  or  $\overline{LE}$  going HIGH.

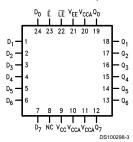
The 100343 outputs are designed to drive a 50  $\!\Omega$  termination resistor to –2.0V. All inputs have 50 k $\!\Omega$  pull-down resistors.

#### **Features**

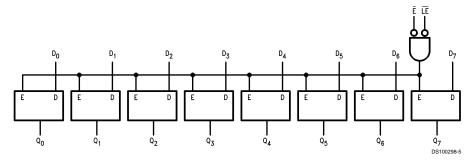
- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883

### **Logic Symbol**




| Pin Names                            | Description        |
|--------------------------------------|--------------------|
| D₀−D <sub>7</sub><br>Ē               | Data Inputs        |
| Ē                                    | Enable Input       |
| ĪĒ                                   | Latch Enable Input |
| Q <sub>0</sub> -Q <sub>7</sub>       | Data Inputs        |
| Q <sub>0</sub> -Q <sub>7</sub><br>NC | No Connect         |

## **Connection Diagrams**


24-Pin DIP



24-Pin Quad Cerpak



## **Logic Diagram**



### **Truth Table**

|                | Inputs | Outputs |                  |  |  |  |
|----------------|--------|---------|------------------|--|--|--|
| D <sub>n</sub> | Ē      | LE      | Q <sub>n</sub>   |  |  |  |
| L              | L      | L       | L                |  |  |  |
| Н              | L      | L       | Н                |  |  |  |
| X              | Н      | X       | Latched (Note 1) |  |  |  |
| Х              | Х      | Н       | Latched (Note 1) |  |  |  |

H = HIGH voltage level
L = LOW voltage level

X = Don't care

Note 1: Retains data present before either  $\overline{\text{LE}}$  or  $\overline{\text{E}}$  went HIGH

### **Absolute Maximum Ratings** (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature  $(T_{STG})$   $-65^{\circ}C$  to  $+150^{\circ}C$ 

Maximum Junction Temperature (T<sub>J</sub>)

Ceramic +175°C

 $V_{EE}$  Pin Potential to Ground Pin -7.0V to +0.5V Input Voltage (DC)  $V_{EE}$  to +0.5V

Output Current (DC Output HIGH) -50 mA

ESD (Note 3) ≥2000V

## Recommended Operating Conditions

Case Temperature (T<sub>C</sub>)

 $\begin{array}{ll} \mbox{Military} & -55\mbox{°C to } +125\mbox{°C} \\ \mbox{Supply Voltage (V}_{EE}) & -5.7\mbox{V to } -4.2\mbox{V} \end{array}$ 

**Note 2:** Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

## Military Version DC Electrical Characteristics

 $V_{EE}$  = -4.2V to -5.7V,  $V_{CC}$  =  $V_{CCA}$  = GND,  $T_{C}$  = -55°C to +125°C

| Symbol           | Parameter                                | Min   | Max   | Units | T <sub>C</sub> | Condi                                   | Notes                                 |         |  |
|------------------|------------------------------------------|-------|-------|-------|----------------|-----------------------------------------|---------------------------------------|---------|--|
| V <sub>OH</sub>  | Output HIGH Voltage                      | -1025 | -870  | mV    | 0°C to         | V <sub>IN</sub> = V <sub>IH</sub> (Max) | Loading with                          | 1, 2, 3 |  |
|                  |                                          |       |       |       | +125°C         | or V <sub>IL</sub> (Min)                | 50Ω to -2.0V                          |         |  |
|                  |                                          | -1085 | -870  | mV    | −55°C          |                                         |                                       |         |  |
| V <sub>OL</sub>  | Output LOW Voltage                       | -1830 | -1620 | mV    | 0°C to         |                                         |                                       |         |  |
|                  |                                          |       |       |       | +125°C         |                                         |                                       |         |  |
|                  |                                          | -1830 | -1555 | mV    | −55°C          |                                         |                                       |         |  |
| V <sub>OHC</sub> | Output HIGH Voltage                      | -1035 |       | mV    | 0°C to         | V <sub>IN</sub> = V <sub>IH</sub> (Max) | Loading with                          | 1, 2, 3 |  |
|                  |                                          |       |       |       | +125°C         | or V <sub>IL</sub> (Min) 50Ω to -2.0    |                                       |         |  |
|                  |                                          | -1085 |       | mV    | −55°C          |                                         |                                       |         |  |
| V <sub>OLC</sub> | Output LOW Voltage                       |       | -1610 | mV    | 0°C to         |                                         |                                       |         |  |
|                  |                                          |       |       |       | +125°C         |                                         |                                       |         |  |
|                  |                                          |       | -1555 | mV    | −55°C          |                                         |                                       |         |  |
| V <sub>IH</sub>  | V <sub>IH</sub> Input HIGH Voltage -1165 |       | -870  | mV    | −55°C to       | Guaranteed HIGH Sig                     | Guaranteed HIGH Signal for All Inputs |         |  |
|                  |                                          |       |       |       | +125°C         |                                         |                                       |         |  |
| V <sub>IL</sub>  | Input LOW Voltage                        | -1830 | -1475 | mV    | −55°C to       | Guaranteed LOW Sig                      | 1, 2, 3, 4                            |         |  |
|                  |                                          |       |       |       | +125°C         |                                         |                                       |         |  |
| I <sub>IL</sub>  | Input LOW Current                        | 0.50  |       | μΑ    | −55°C to       | o V <sub>EE</sub> = -4.2V               |                                       | 1, 2, 3 |  |
|                  |                                          |       |       |       | +125°C         | $V_{IN} = V_{IL} (Min)$                 |                                       |         |  |
| I <sub>IH</sub>  | Input HIGH Current                       |       | 240   | μΑ    | 0°C to         | V <sub>EE</sub> = -5.7V                 |                                       | 1, 2, 3 |  |
|                  |                                          |       |       |       | +125°C         | $V_{IN} = V_{IH} (Max)$                 |                                       |         |  |
|                  |                                          |       | 340   | μA    | −55°C          |                                         |                                       |         |  |
| I <sub>EE</sub>  | Power Supply Current                     |       |       |       | −55°C to       | Inputs Open                             |                                       |         |  |
|                  |                                          | -100  | -35   | mA    | +125°C         | $V_{EE} = -4.2V \text{ to } -4.8V$      | 1                                     | 1, 2, 3 |  |
|                  |                                          | -105  | -35   |       |                | $V_{EE} = -4.2V \text{ to } -5.7V$      | 1                                     |         |  |

Note 4: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 5: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 6: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 7: Guaranteed by applying specified input condition and testing  $V_{\mbox{OH}}/V_{\mbox{OL}}$ .

### Military Version AC Electrical Characteristics

 $V_{EE}$  = -4.2V to -5.7V,  $V_{CC}$  =  $V_{CCA}$  = GND

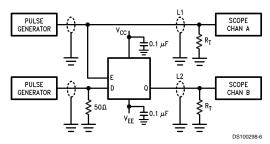
| Symbol           | Parameter                | T <sub>C</sub> = -55°C |      | T <sub>C</sub> = +25°C |      | T <sub>C</sub> = +125°C |      | Units | Conditions      | Notes        |
|------------------|--------------------------|------------------------|------|------------------------|------|-------------------------|------|-------|-----------------|--------------|
|                  |                          | Min                    | Max  | Min                    | Max  | Min                     | Max  |       |                 |              |
| t <sub>PLH</sub> | Propagation Delay        | 0.50                   | 2.70 | 0.50                   | 2.30 | 0.50                    | 2.80 | ns    | Figures 1, 2, 3 | (Notes 8, 9, |
| t <sub>PHL</sub> | D <sub>n</sub> to Output |                        |      |                        |      |                         |      |       | rigules 1, 2, 3 | 10, 12)      |

# Military Version AC Electrical Characteristics (Continued)

 $V_{\rm EE}$  = -4.2V to -5.7V,  $V_{\rm CC}$  =  $V_{\rm CCA}$  = GND

| Symbol              | Parameter                      | T <sub>C</sub> = -55°C |      | T <sub>C</sub> = +25°C |      | T <sub>C</sub> = +125°C |      | Units | Conditions      | Notes        |
|---------------------|--------------------------------|------------------------|------|------------------------|------|-------------------------|------|-------|-----------------|--------------|
|                     |                                | Min                    | Max  | Min                    | Max  | Min                     | Max  |       |                 |              |
| t <sub>PLH</sub>    | Propagation Delay              | 0.90                   | 3.40 | 1.0                    | 3.10 | 1.10                    | 3.90 | ns    | Figures 1, 2, 3 | (Notes 8, 9, |
| t <sub>PHL</sub>    | LE, E to Output                |                        |      |                        |      |                         |      |       | riguies 1, 2, 3 | 10, 12)      |
| t <sub>TLH</sub>    | Transition Time                | 0.40                   | 2.50 | 0.40                   | 2.40 | 0.40                    | 2.70 | ns    | Figures 1, 3    | (Note 11)    |
| t <sub>THL</sub>    | 20% to 80%, 80% to 20%         |                        |      |                        |      |                         |      |       |                 |              |
| t <sub>s</sub>      | Setup Time                     |                        |      |                        |      |                         |      |       |                 |              |
|                     | D <sub>0</sub> -D <sub>7</sub> | 0.60                   |      | 0.60                   |      | 0.60                    |      | ns    | Figures 1, 4    | (Note 11)    |
| t <sub>h</sub>      | Hold Time                      |                        |      |                        |      |                         |      |       |                 |              |
|                     | D <sub>0</sub> -D <sub>7</sub> | 1.50                   |      | 1.50                   |      | 1.70                    |      | ns    | Figures 1, 4    | (Note 11)    |
| t <sub>pw</sub> (H) | Pulse Width HIGH               |                        |      |                        |      |                         |      |       |                 |              |
|                     | ĪĒ, Ē                          | 2.40                   |      | 2.40                   |      | 2.40                    |      | ns    | Figures 1, 4    | (Note 11)    |

Note 8: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 9: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 10: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11.

Note 11: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Note 12: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

### **Test Circuitry**



Note 13:  $V_{CC}$ ,  $V_{CCA}$  = +2V,  $V_{EE}$  = -2.5V

Note 14: L1 and L2 = equal length  $50\Omega$  impedance lines

 $R_T$  = 50 $\Omega$  terminator internal to scope

Decoupling 0.1  $\mu F$  from GND to  $V_{CC}$  and  $V_{EE}$ 

All unused outputs are loaded with  $50\Omega$  to GND

 $C_L$  = Fixture and stray capacitance  $\leq$  3 pF

FIGURE 1. AC Test Circuit

### **Switching Waveforms**

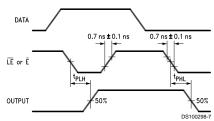



FIGURE 2. Propagation Delays

## Switching Waveforms (Continued)

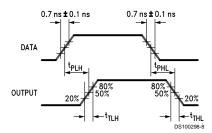



FIGURE 3. Propagation and Transition Times

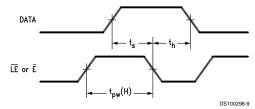
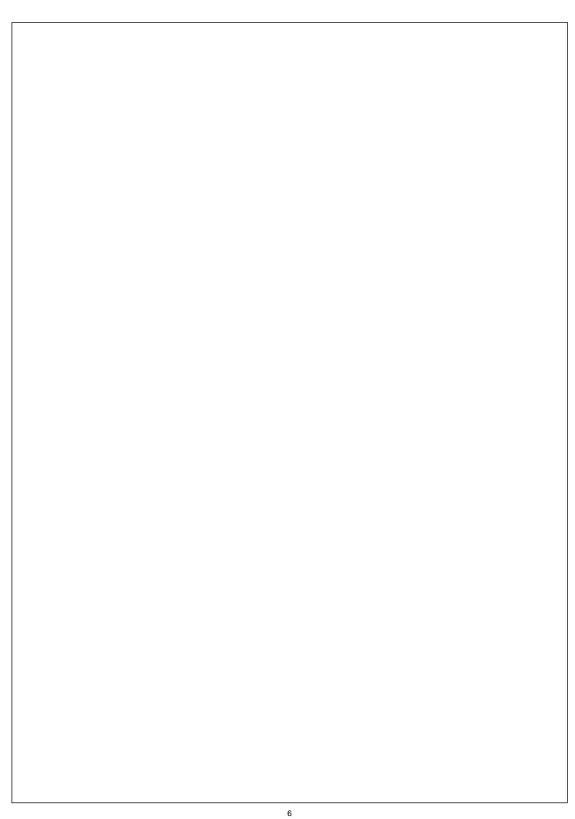
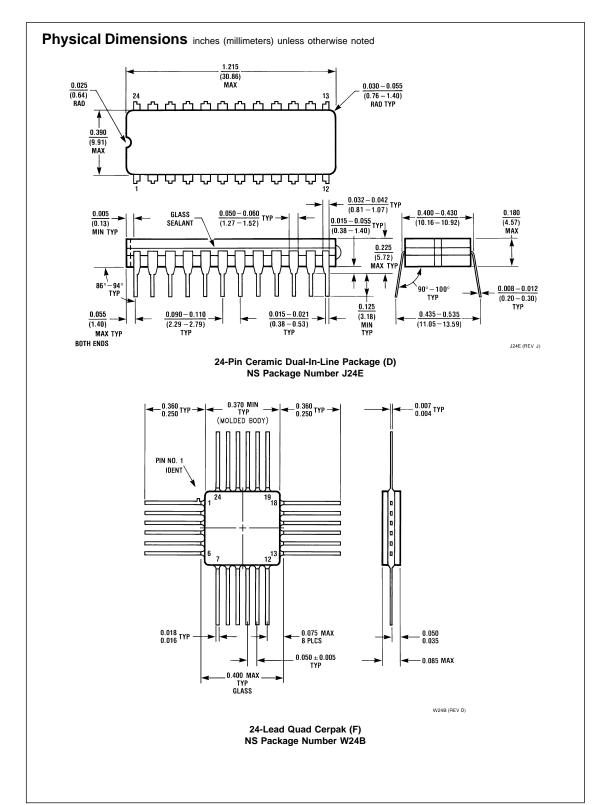





FIGURE 4. Setup, Hold and Pulse Width Times





#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor Corporation Americas Tel: 1-800-272-9959

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tei: +49 (0) 1 80-530 85 85
English Tei: +49 (0) 1 80-532 78 32
Français Tei: +49 (0) 1 80-532 35
Italiano Tei: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179