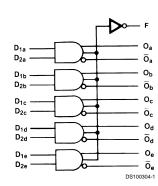
August 1998

National Semiconductor

100304 Low Power Quint AND/NAND Gate

General Description

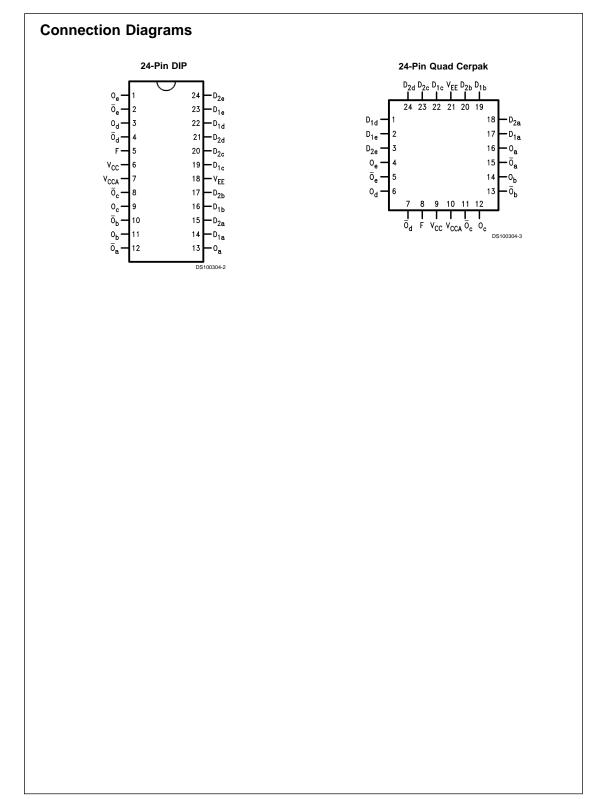

The 100304 is monolithic quint AND/NAND gate. The Function output is the wire-NOR of all five AND gate outputs. All inputs have 50 k Ω pull-down resistors.

- 2000V ESD protection
- Pin/function compatible with 100104 ■ Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range
- Available to Standard Microcircuit Drawing (SMD) 5962-9153701

Features

Low Power Operation

Logic Symbol



Logic Equation

 $\mathsf{F} = \overline{(\mathsf{D}_{1a} \bullet \mathsf{D}_{2a})} + \overline{(\mathsf{D}_{1b} \bullet \mathsf{D}_{2b})} + \overline{\mathsf{D}_{1c}} \bullet \overline{\mathsf{D}_{2c}} + \overline{(\mathsf{D}_{1d} \bullet \mathsf{D}_{2d})} + \overline{(\mathsf{D}_{1e} \bullet \mathsf{D}_{2e})}.$

Pin Names	Description						
D _{na} -D _{ne}	Data Inputs						
F	Function Output						
O _a -O _e	Data Outputs						
$\overline{O}_{a} - \overline{O}_{e}$	Complementary Data Outputs						

© 1998 National Semiconductor Corporation DS100304

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impaired

–65°C to +150°C
+175°C
-7.0V to +0.5V
V _{EE} to +0.5V
–50 mA

ESD (Note 2)

Recommended Operating Conditions

≥2000V

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	Tc	Cond	Notes	
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to			
					+125°C			
		-1085	-870	mV	–55°C	V _{IN} = V _{IH} (Max)	Loading with	(Notes 3, 4, 5)
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V _{IL} (Min)	50Ω0 to −2.0V	
					+125°C			
		-1830	-1555	mV	–55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to			
					+125°C			
		-1085		mV	–55°C	V _{IN} = V _{IH} (Min)	Loading with	(Notes 3, 4, 5)
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to	or V _{IL} (Max)	50Ω to -2.0V	
					+125°C			
			-1555	mV	–55°C]		
VIH	Input HIGH Voltage	-1165	-870	mV	–55°C	Guaranteed HIGH Signal		(Notes 3, 4, 5, 6)
					+125°C	for All Inputs		
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW Signal		(Notes 3, 4, 5, 6)
					+125°C	for All Inputs		
I _{IL}	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$		(Notes 3, 4, 5)
					+125°C	$V_{IN} = V_{IL}$ (Min)		
	Input High Current							
	D _{2a} -D _{2e}		250	μA	0°C to			
	D _{1a} -D _{1e}		350		+125°C	V _{EE} = -5.7V		(Notes 3, 4, 5)
I _{IH}						V _{IN} = V _{IH} (Max)		
	D _{2a} -D _{2e}		350	μA	–55°C			
	D _{1a} -D _{1e}		500					
I _{EE}	Power Supply Current	-75	-25	mA	–55°C to	Inputs Open		(Notes 3, 4, 5)
					+125°C			

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups, 1, 2 3, 7, and 8.

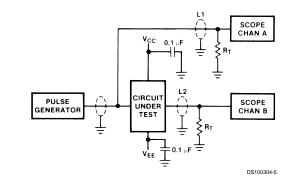
Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing $V_{\text{OH}}/V_{\text{OL}}.$

AC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND

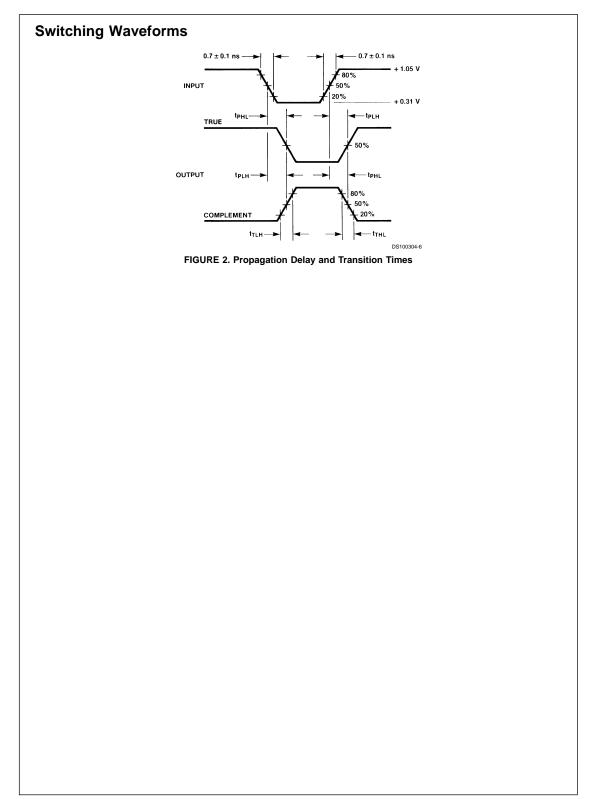
.

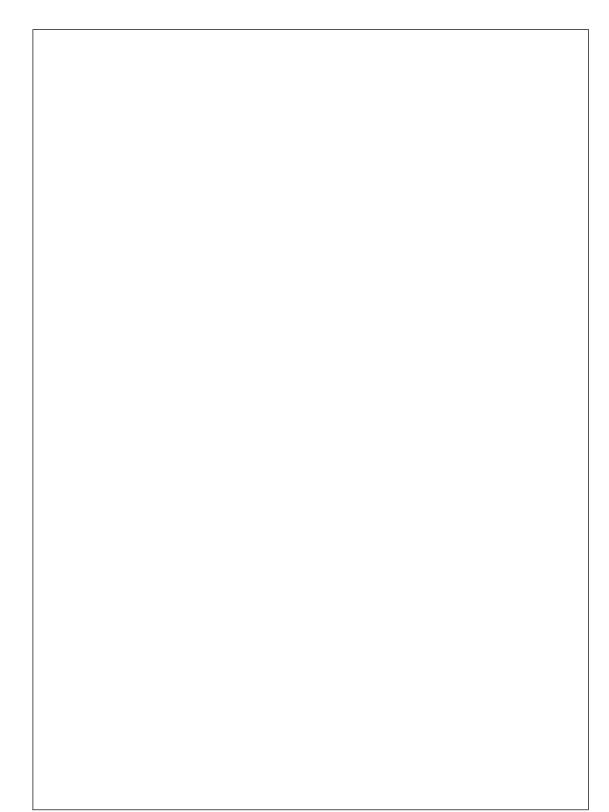

Symbol	Parameter	T _c =	–55°C	T _c =	$_{c} = +25^{\circ}C$ $T_{c} = +125^{\circ}C$		Units	Conditions	Notes	
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay	0.30	1.90	0.40	1.80	0.30	2.30	ns		
t _{PHL}	D_{na} - D_{ne} to O, \overline{O}									(Notes 7, 8, 9)
t _{PLH}	Propagation Delay	0.80	2.90	0.90	2.80	0.90	3.40	ns	Figures 1, 2	
t _{PHL}	Data to F									
t _{TLH}	Transition Time	0.20	1.80	0.30	1.60	0.20	2.00	ns		(Note 10)
t _{THL}	20% to 80%, 80% to 20%									

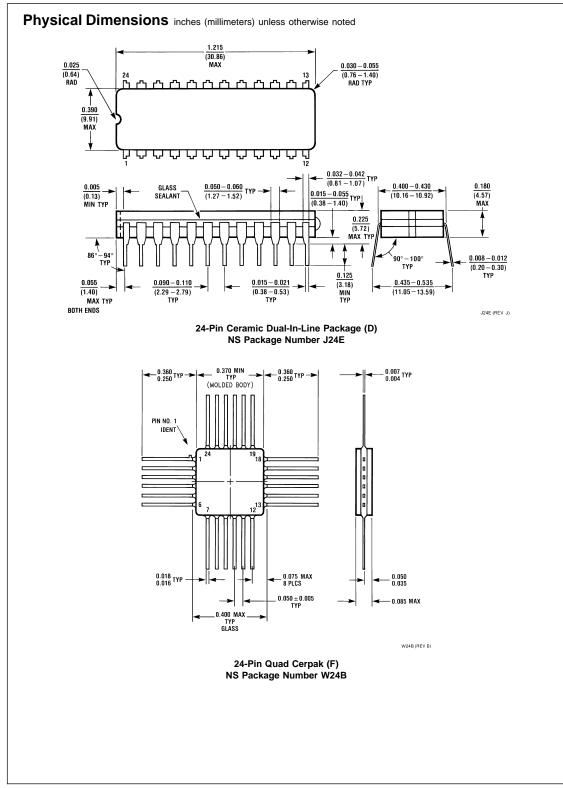
Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each mfg. lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11. Note 10: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).


Test Circuitry




Notes:

 $\begin{array}{l} V_{CC}, V_{CA} = +2V, V_{EE} = -2.5V\\ L1 \mbox{ and } L2 = \mbox{ equal length } 50\Omega \mbox{ impedance lines } R_T = 5\Omega2 \mbox{ terminator internal to scope } \\ Decoupling 0.1 \mbox{ } \mu F \mbox{ from GND to } V_{CC} \mbox{ and } V_{EE}\\ All unused outputs \mbox{ are loaded with } 50\Omega \mbox{ to GND } \\ C_L = \mbox{ Fixture and stray capacitance } \leq 3 \mbox{ pF} \end{array}$

FIGURE 1. AC Test Circuit

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
\mathbf{N}	Corporation	Europe	Asia Pacific Customer	Japan Ltd.
/*	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com		
		Français Tel: +49 (0) 1 80-532 93 58		
ww.na	tional.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.