

AN-012 HiRel Power Application Brief Gate Driver Circuit Design with GaN E-HEMTs

October 23, 2020

Simple-driven GaN Technology

Common with Si MOSFET

- True enhancement-mode normally off
- Voltage driven driver charges/discharges C_{ISS}
- Supply Gate leakage I_{GSS} only
- Easy slew rate control by R_G
- Compatible with Si gate driver chip

Differences

- Much Lower Q_G: Lower drive loss; faster switching
- Higher gain and lower V_{GS}: +5-6V gate bias to turn on
- Lower V_{G(th)}: typ. 1.5V

Versus other enhancement-mode GaN

- More robust gate: -20/+10V max rating
- No DC gate drive current required
- No complicated gate diode / PN junction

GaN HEMTs are simple to drive

Gate Bias Level	GaN Systems GaN E-HEMT	Si MOSFET	IGBT	SIC MOSFET
Maximum rating	-20/+10V	-/+20V	-/+20V	-8/+20V
Typical gate bias values	0 or-3/+5-6V	0/+10-12V	0 or -9/+15V	-4/+15-20V

650V Drivers

- GaN Systems GaN HEMTs are compatible with most drivers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to convert the V_{GS} into +6/-(V_{DD} -6) V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Gate Drivers		Configuration	Isolation	Notes
	Si8271	Single switch	Isolated	Split outputs
SILICON LABS	Si8273/4/5	Half-Bridge	Isolated	Dead time programmability
ANALOG	ADuM4121ARIZ	Single Switch	Isolated	Internal miller clamp
BROADCOM.	ACPL-P346	Single Switch	Isolated	Internal miller clamp
HEYDAY —INTEGRATED CIRCUITS—	HEY1011	Single Switch	Isolated	Power Rail Integrated
ON Semiconductor	NCP51820	Half Bridge	Non-Isolated	Bootstrap voltage management

100V/80V Drivers

- GaN Systems GaN HEMTs are compatible with most of the drivers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to converter the V_{GS} into +6/-(V_{DD} -6) V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Gate Drive	ers	Configuration	Split Outputs	Bootstrap voltage management	Notes
Semi	PE29101	Half-Bridge	Yes	Yes	Frequency up to 33MHz
A Murata Company	PE29102	Half-Bridge	Yes	No	Frequency up to 33MHz
力 力智電子 POWER INTELLECT	uP1966A	Half-Bridge	Yes	Yes	General Purpose
Jia Texas	LMG1205	Half-Bridge	Yes	Yes	General Purpose
Instruments	LM5113-Q1	Half-Bridge	Yes	Yes	Automotive Qualified

Controllers with Driver Integrated for GaN

- GaN Systems GaN HEMTs are compatible with most of the controllers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to converter the V_{GS} into +6/-(V_{DD} -6) V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Configurations	Controllers		Description
Flyback - Adapters - Chargers - Other low-power AC/DCs	ON Semiconductor	NCP1342	650V, Quasi-resonant
	TEXAS INSTRUMENTS	UCC28600	600V, Quasi-resonant
	ON Semiconductor	NCP1250	650V, Fixed frequency
Sync Buck DC/DC (48V/12V)	■ ANALOG DEVICES	LTC7800	60V, Sync rectifier control, up to 2.2MHz

Controllers with Driver Integrated for GaN - continued

- GaN Systems GaN HEMTs are compatible with most of the controllers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to converter the V_{GS} into +6/-(V_{DD} -6) V, refer to page 7.
- V_{DD} is recommended to \leq 12V.

Configurations	Controllers		Notes
LLC	ON _	NCP13992	600V, current mode controller
 Adapters Chargers Flat panel displays Industrial power 		NCP1399	600V, current mode controller, off-mode operation
	TEXAS INCOMENTS	UCC256404	600V, optimized burst mode, low audible noise and standby power
	INSTRUMENTS	UCC256301	600V, hybrid hysteric mode, low standby power, wide operating frequency
PFC • PC Power Supplies	ON Semiconductor	NCP1615 / NCP1616	700V, critical conduction mode operation
Ampliances	TEXAS INSTRUMENTS	UCC28180	Programable frequency, continuous conduction mode operation, no AC line HV sensing
PFC + LLC	Monolithic Power Systems, Inc.	HR1203	700V, CCM/DCM Multi-mode PFC control, adjustable dead-time and bust mode switching LLC

Driver Circuit Examples

Single GaN \rightarrow Isolated \rightarrow 0V $V_{GS(OFF)} \rightarrow$ Single Isolated Driver

- 0V _{VGS(OFF)} for low voltage or low power applications, or where the deadtime loss is critical
- Optional CM Choke for better noise immunity

Example I: Driver with separate outputs for switch ON/OFF (SI8271)

Example II: Driver with single output for switch ON and OFF (ADUM4121)

Single GaN \rightarrow Isolated \rightarrow Negative $V_{GS(OFF)} \rightarrow$ EZDrive[®]

- Negative V_{GS} voltage is applied by the 47nF capacitor
- Compatible with bootstrap circuit
- Applicable from 1kW ~ 100kW power range
- Optional CM Choke for better noise immunity

Example: SI8271 EZDrive® circuit (V_{GS}=+6V/-3V)

For more info about GaN EZDrive®, please refer to GN010: https://gansystems.com/

Single GaN \rightarrow Isolated \rightarrow Negative $V_{GS(OFF)} \rightarrow$ with Voltage divider

- Negative V_{GS} voltage is generated by the voltage divider (5.8V Zener diode and 1kOhm resistor)
- Robust and easy to layout
- Applicable for applications from low power to higher power (1kW ~ 100kW)
- Optional CM Choke for better noise immunity

Example: SI8271 driving circuit with voltage divider (V_{GS}=+6V/-3V)

Single GaN \rightarrow Isolated \rightarrow Negative $V_{GS(OFF)} \rightarrow$ Digital Isolator + Non-isolated Driver

- To enable non-isolated driver or buffer with high sink current capability where isolation is required
- For high power applications: e.g. EV motor drive, PV inverter, etc.
- Optional CM Choke for better noise immunity

Example: SI8610 (digital isolator) + UCC27511(Non-isolated driver) (V_{GS}=+6V/-6V)

Single GaN \rightarrow Non-Isolated \rightarrow 0V $V_{GS(OFF)}$

- For single-ended applications (Class E, Flyback, Push-pull etc)
- Or to work with a digital isolator for the high-side switch

Example: UCC27511 driving circuit (V_{GS}=+6V/0V)

October 2020

Single GaN \rightarrow Non-Isolated \rightarrow Negative $V_{GS(OFF)} \rightarrow$ EZDrive[®]

- Negative V_{GS} voltage is applied by the 47nF capacitor
- Compatible with bootstrap circuit
- Optional CM Choke for better noise immunity

Example: UCC27511 driving circuit (V_{GS}=+6V/-3V))

For more info about GaN EZDrive®, please refer to GN010: https://gansystems.com/

Half/Full Bridge \rightarrow 0V $V_{GS(OFF)} \rightarrow$ Bootstrap

- For low power applications
- Choose the bootstrap diode with low CJ and fast recovery time

Example: NCP51820 Bootstrap driving circuit (V_{GS}=+6V/0V)

Half/Full Bridge \rightarrow Negative $V_{GS(OFF)} \rightarrow$ Bootstrap + EZDrive[®]

- EZDrive® can get a negative voltage on 47nF capacitor, which can be used as turn off voltage
- Turn on/off slew rate is controllable with external resistors to optimize EMI
- Suitable for low power application

Example: NCP51530 Bootstrap driving circuit with EZdrive® (V_{GS}=+6V/-3V)

For more info about GaN EZDrive®, please refer to GN010: https://gansystems.com/

Driver Circuit for GaN HEMT in Parallel

• For HEMTs in parallel, add additional 10hm gate and source resistors (as highlighted below)

Example: UCC27511 non-isolated driving circuit for single GaN (V_{GS}=+6V/0V)

Example: LM5113 bootstrap driving circuit for half-bridge (V_{GS}=+6V/0V)

For more info about GaN in parallel, please refer to GN004: https://gansystems.com/

Appendix

- Gate driving tips for V_{GS(OFF)}
- When is V_{GS(OFF)} needed?
- V_{GS(OFF)} vs. Switching-off Loss
- Trade-off between Switching-off Loss and Deadtime Loss

When is negative $V_{GS(OFF)}$ needed?

- Negative V_{GS(OFF)} can increase noise immunity
- Negative V_{GS(OFF)} can reduce switching-off loss especially under high-current
- Deadtime loss increases as Negative $V_{GS(OFF)}$ increase (more info please refer to page 8, APPNOTE GN001)
- There is a tradeoff between switching-off and deadtime loss for $V_{GS(OFF)}$ selection.
 - -3V $V_{GS(OFF)}$ is recommended to start with for above 0.5kW applications.

V _{GS(OFF)} vs. Switching-off Loss

Switching-off loss of GS66516B vs. current at V_{BUS} =400 V,25°C, R_{G} =1 Ω

Negative V_{DRoff} reduces the switching off energy under high current

V_{GS(OFF)} vs. Zero Voltage Switching Boundary and Dead Time Loss

Relation between total loss and deadtime of GS66516B at I_D =10A, 25°C

Optimum deadtime Vs. switching off current at $V_{RIIS}=400V$

zvs boundary:
$$t_d > \frac{c_{eq} \cdot v_{bus}}{i_{Switching}}$$
 (1)
$$0.5 \cdot L \cdot i_{Smin}^2 > i_{Smin} \cdot v_{SD} \cdot (t_d - \frac{c_{eq} \cdot v_{DC}}{i_{Smin}}) + 0.5 \cdot c_{eq} \cdot v_{DC}^2$$
 (2)

- Deadtime loss increases as $V_{GS(OFF)}$ increases
- A too short dead time will result in losing ZVS, while a too long dead time will cause additional loss

Trade-off between Switching-off Loss and Deadtime Loss

Half-bridge overall loss vs. switching current under different negative turn-off gate voltage V_{DRoff} (a) with deadtime t_D =40 nS, (b) with deadtime t_D =100 nS, (c) with deadtime t_D =200 nS.

- Negative V_{DRoff} is will make the power stage more efficient under higher power
- Precise dead time control is the key to higher system efficiency

www.tdehirel.com

www.gansystems.com

