


# 8.0 - 12.0 GHz Low Noise Amplifier

#### **Features**

- Frequency Range: 8.0 12.0 GHz
- Low Noise Figure < 1.7 dB
- 26 dB Nominal Gain
- 12 dBm P1dB
- High IP3
- Input Return Loss > 10 dB
- Output Return Loss > 10 dB
- ac coupled 50 ohm match (mid-band)
- 0.15 µm InGaAs pHEMT Technology
- Chip dimension: 3.0 x 3.0 x 0.1 mm

## **Functional Diagram**



# **Typical Applications**

- RADAR
- Military
- Test Equipment and sensors
- Point-to-Point Radios, Point-to-Multi-Point Radios & VSATS

# **Description**

The Teledyne e2v TDLNA001013 is a three-stage, ultra-low-noise amplifier that operates from 8.0 - 12.0 GHz. The LNA features 26 dB gain and has a typical mid-band noise figure of 1.35 dB. The LNA has nominal input/output return losses of 10 dB. The nominal P1dB is 12 dBm.

Self-bias technique has been employed to facilitate single-supply operation. Circuit ground is provided through vias to backside die metallization. The TDLNA001013 performs well as a low noise amplifier in receive applications and as a driver or buffer amplifier where high gain, excellent linearity and low power consumption are important.

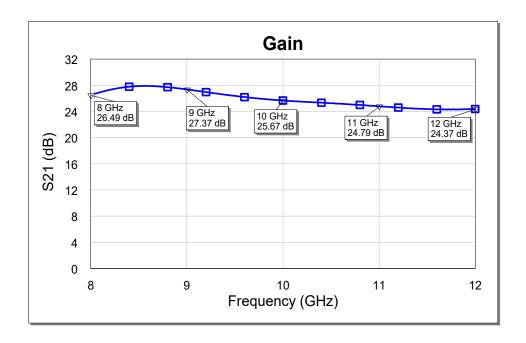
# Absolute Maximum Ratings<sup>1</sup>

| Parameter               | Absolute Maximum | Units |
|-------------------------|------------------|-------|
| Drain bias voltage (Vd) | +6               | volts |
| RF input power          | +10              | dBm   |
| Operating temperature   | -50 to +85       | oC    |
| Storage Temperature     | -65 to +150      | oC    |

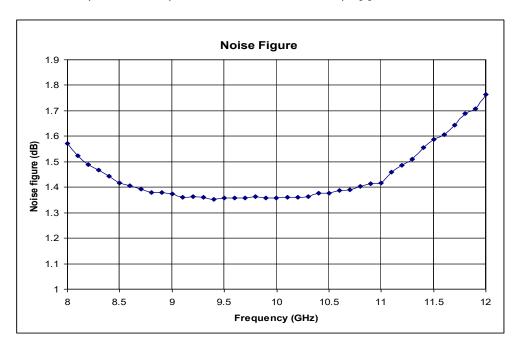
<sup>1.</sup> Operation beyond these limits may cause permanent damage to the component.



# Electrical Specifications for Bare Die @ $T_A$ = 25 °C, Vd1 = Vd2 = 2 V, Vd3= 5 V $Z_0$ = 50 $\Omega^2$


| Parameter                                        | Min | Тур | Max | Units |
|--------------------------------------------------|-----|-----|-----|-------|
| Frequency Range                                  | 8   | 9.6 | 12  | GHz   |
| Gain                                             | 21  | 26  | 32  | dB    |
| Gain Flatness                                    | 4   | 6   | 8   | dB    |
| Noise Figure (mid-band)                          |     | 1.4 | 2.5 | dB    |
| Input Return Loss                                |     | 10  |     | dB    |
| Output Return Loss                               |     | 10  |     | dB    |
| Output Power (P1dB) @ 9.6 GHz                    | +10 | +12 |     | dBm   |
| Saturated Output Power (Psat) @ 9.6 GHz          | +13 | +15 |     | dBm   |
| Output Third Order Intercept (IP3) @ 9.6 GHz     | 23  | 27  | 30  | dBm   |
| Supply Current (Id) (Vd1 = Vd2 = 2 V, Vd3 = 5 V) | 70  | 80  | 102 | mA    |

#### Notes:

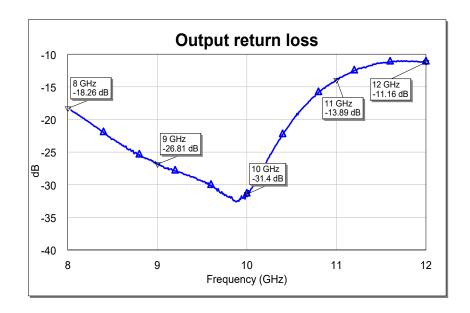

2. Electrical performance from test fixture measurements



# Test fixture data for Bare Die Vd1 = Vd2 = 2 V, Vd3 = 5 V, Total Current = 80 ma, T<sub>A</sub> = 25 °C

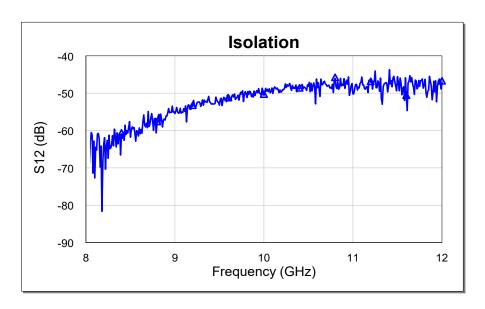


# Test fixture data for Bare Die Vd1=Vd2 = 2 V, Vd3 = 5 V, Total Current = 80 ma, T<sub>A</sub> = 25°C

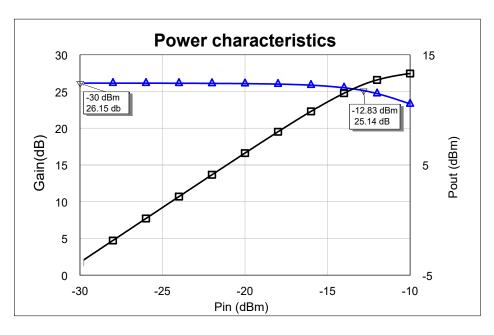





# Test fixture data for Bare Die Vd1 = Vd2 = 2 V, Vd3 = 5 V, Total Current = 80 ma, T<sub>A</sub> = 25 °C



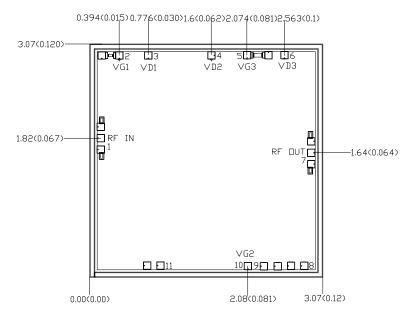

Test fixture data for Bare Die Vd1 = Vd2 = 2 V, Vd3 = 5 V, Total Current = 80 ma, T<sub>A</sub> = 25 °C






Test fixture data for Bare Die Vd1 = Vd2 = 2 V, Vd3 = 5 V. Total Current = 75 ma, Gain Compression and P1dB measured at 9 GHz, TA = 25 °C




Test fixture data for Bare Die Vd1 = Vd2 = 2 V, Vd3 = 5 V, Frequency = 9.6 GHz Total Current =75 ma, Тд = 25 °C



Pout at 1 dB compression @ 9.6 GHz = 12 dBm



### **Mechanical Characteristics**



Units: Millimeters [Inches]

All RF and dc bond pads are 100 µm x 100 µm

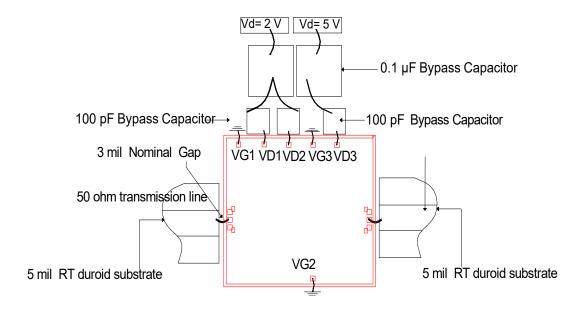
Note:

Pad 1: RF in

Pad 2: VG1 (Source grounding)

Pad 3: VD1 (Drain bias) Pad 4: VD2 (Drain Bias)

Pad 5: VG3 (Source grounding)


Pad 6: VD3 (Drain Bias)

Pad 7: RF out

Pad 10: VG2 (Source grounding)



# **Recommended Assembly Diagram**



#### Notes:

- 1. Two 1 mil (0.0254 mm) bond wires of minimum length should be used for RF input and output.
- 2. Two 1 mil (0.0254 mm) bond wires of minimum length should be used from chip bond pad to 100 pF capacitor.
- 3. Input and output 50 ohm lines are on 5 mil substrate.
- 4. 0.1 µF capacitors may be additionally used as a second level of bypass for reliable operation.

Die attach: Use AuSn (80/20) 1-2 mil. Preform solder.

Wire bonding: For dc pad connections use either ball or wedge bonds. For best RF performance, use of  $150 - 200 \, \mu m$  length of wedge bonds is advised. Ball bonds are acceptable, but may reduce RF performance.



GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing





**Product Specification** 

# **Ordering Information**

| Order Code     | Description                     | Package  | Shipping Method |
|----------------|---------------------------------|----------|-----------------|
| TDLNA001013-98 | TDLNA001013 EM / Evaluation die | Bare Die | Gel-Pack        |
| TDLNA001013-99 | TDLNA001013 FM / Flight die     | Bare Die | Gel-Pack        |
| TDLNA001013-00 | TDLNA001013 Evaluation kit      | Module   | 1 / Box         |



# **Document Revision History**

| Documnt Number              | Description                                          | Date       |
|-----------------------------|------------------------------------------------------|------------|
| TDLNA001013 11_30_2021 Rev1 | Initial Release                                      | 11/30/2021 |
| TDLNA001013 11_27_2023 Rev2 | Updated Ordering Information and revised accordingly | 12/07/2023 |

# **Document Category Definitions:**

#### **Advance Information**

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

### **Preliminary Specification**

The data sheet contains preliminary data. Additional data may be added at a later date. Teledyne e2v HiRel Electronics reserves the right to change specifications at any time without notice in order to supply the best possible product.

### **Product Specification**

The data sheet contains final data. In the event Teledyne e2v HiRel Electronics decides to change the specifications, Teledyne e2v HiRel Electronics will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

#### **Sales Contact**

For additional information, Email us at: hirel@teledyne.com ~ www.tdehirel.com

#### **Disclaimers**

The information in this document is believed to be reliable. However, Teledyne e2v HiRel Electronics assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. Teledyne e2v's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Teledyne e2v product could create a situation in which personal injury or death might occur. Teledyne e2v assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

#### **Copyright and Trademark**

Trademarks are the property of their respective owners.

2023, Teledyne e2v HiRel Electronics. All rights reserved.