

he PE9309 is a high-performance dynamic UltraCMOS® prescaler with a fixed divide ratio of 4. Its operating

frequency range is 3.0 GHz to 13.5 GHz. The PE9309

The PE9309 is manufactured on Peregrine's UltraCMOS process, a patented variation of silicon-on-insulator (SOI)

performance of GaAs with the economy and integration of

technology on a sapphire substrate, offering the

Product Description

hybrid application.

conventional CMOS.

Product Specification

PE9309

3.0-13.5 GHz Low Power UltraCMOS® **Divide-by-4 Prescaler Radiation Tolerant for Space Applications**

Features

- High-frequency operation: up to 13.5 GHz
- · Fixed divide ratio of 4
- 2.6V
- · Available as DIE

- operates on a single supply with a frequency-selecting Low-power operation:16 mA typical @ bias resistor and draws only 16 mA. It is packaged in a small 8-lead CFP and is also available in die form for
 - Small package: 8-lead CFP

Figure 2. Package Type 8-lead CFP

Figure 1. Functional Schematic Diagram

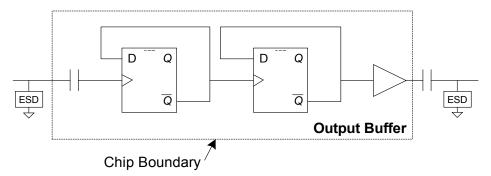


Table 1. Electrical Specifications ($Z_S = Z_L = 50\Omega$) –40 °C $\leq T_A \leq$ +85 °C, unless otherwise specified

Parameter	Condition	Min	Тур	Max	Unit
Frequency		3.0		13.5	GHz
Output power, P _{out}	0.75 GHz ≤ F _{OUT} ≤ 3.375 GHz	0			dBm
Input power, P _{IN}	3.0 GHz ≤ F _{IN} < 13.5 GHz	0		7	dBm

Figure 3. Pin Configuration (Top View)

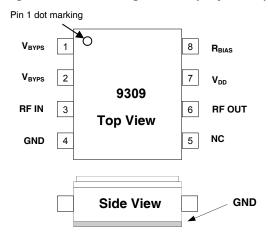


Table 2. Pin Descriptions

Pin #	Pin Name	Description	
1	V_{BYPS}	Prescaler supply bypass	
2	V_{BYPS}	Prescaler supply bypass	
3	IN	RF input	
4	GND	Ground	
5	NC	Not connected	
6	OUT	RF output	
7	V_{DD}	Supply voltage	
8	R _{BIAS}	Frequency-selecting bias resistor	
GND	GND	Bottom of the package is ground. Connecting the bottom of the package to ground is required	

Table 3. Operating Ranges

Parameter	Min	Тур	Max	Unit
Supply voltage, V _{DD}	2.45	2.6	2.75	٧
Supply current, I _{DD}	6		23	mA

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	DC supply voltage		3.0	V
T _{ST}	Storage temperature range	-65	+150	°C
T _{OP}	Operating temperature range	-40	+85	°C
Θ _{JC}	Theta JC		57	°C/W
T_J	Junction temperature maximum		+125	°C
V _{ESD}	ESD voltage (Human Body Model)		250	٧
P _{IN_MAX}	Maximum input power		14	dBm

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

ELDRS

UltraCMOS devices do not include bipolar minority carrier elements, and therefore do no exhibit enhanced low dose rate sensitivity.

Device Functional Considerations

The PE9309 divides a 3.0 GHz to 13.5 GHz input signal by four, producing a 750 MHz to 3.375 GHz output signal. In order for the prescaler to work properly, several conditions need to be adhered to. It is crucial that pins 1, 2 and 7 be supplied with bypass capacitors to ground. In addition, the output signal (pin 6) needs to be ac coupled via an external capacitor as shown in the test circuit in Figure 5.

The input frequency range is selected by the value of R_{BIAS} according to Figure 4.

The ground pattern on the board should be made as wide as possible to minimize ground impedance.

The bottom of the package is the primary ground connection and it needs to be soldered to the PCB around.

Figure 4. Frequency vs RBIAS

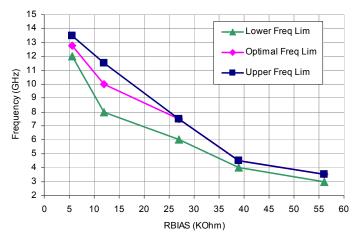
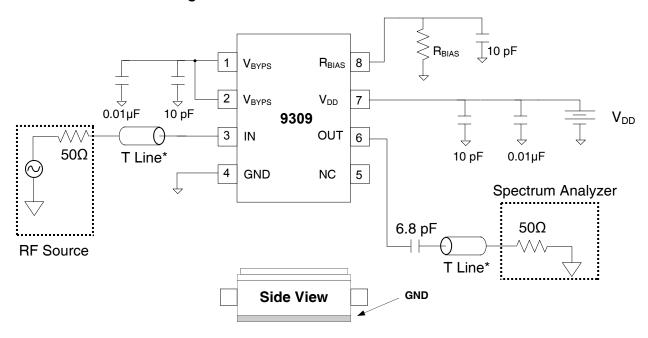
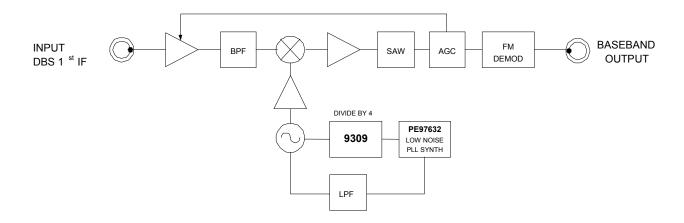
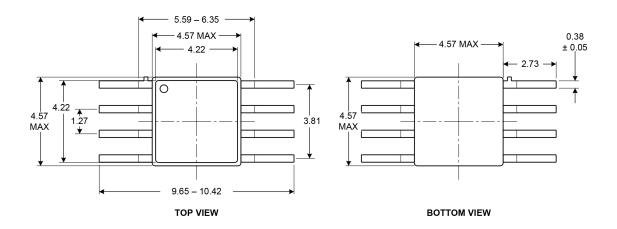



Figure 5. Test Circuit Block Diagram

*T Line = Transmission Line

Figure 6. High Frequency System Application

The wideband frequency of operation of the PE9309 makes it an ideal part for use in a DBS down converter system.

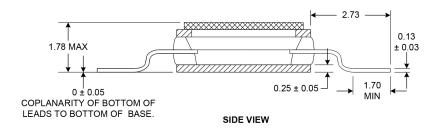
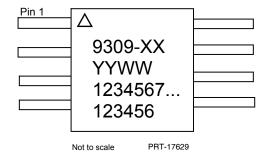


Figure 9. Package Drawing (dimensions are in millimeters)

8-lead CFP

Note: Bottom of the package is ground. Connecting the bottom of the package to ground is required.



DIMS IN MM. ALL TOLERANCES ARE +/- 0.127 UNLESS OTHERWISE STATED. NOT TO SCALE

Rev. 97 170809 **IIGNALB**

Figure 10. Top Marking Specifications

Line 1: Pin 1 indicator \triangle No e2v or Peregrine logos present

Line 2: Part number (XX will be specified by the purchase order)

Line 3: Date code (last two digits of the year and work week)

Line 4: Wafer lot # (as many characters as room allows)

Line 5: DOP # (e2v internal / 5 digits / optional, as room allows)

Line 6: Serial # (5 digits minimum)

Note: There is **NO** backside symbolization on any of the Peregrine products.

Table 5. Ordering Information

Order Code	Description	Package	Shipping Method
9309–01*	PE9309 Engineering samples	8-lead CFP	50 / Tray
9309–11	PE9309 Flight units	8-lead CFP	50 / Tray
9309–00	PE9309 Evaluation kit	Evaluation kit	1 / Box
8PCFP-MS	8 Pin Mechanical Samples	8 Pin CFP	1/Tray

Note: * The 9309-01 devices are engineering sample (ES) prototype units intended for use as initial evaluation units for customers of the PE9309-11 flight units. The PE9309-01 device provides the same functionality and footprint as the PE9309-11 space qualified device, and intended for engineering evaluation only. They are tested at +25 °C only and processed to a non-compliant flow (e.g. no burn-in, non-hermetic, etc). These units are non-hermetic and are not suitable for qualification, production, radiation testing or flight use.

Sales Contact and Information

Contact Information:

irel.com ~ inquiries@e2v-us.com

Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. <u>Preliminary Specification:</u> The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. <u>Product Specification:</u> The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.ps

©2020 Teledyne e2v HiRel Electronics All rights reserved.