

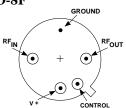
Voltage-Controlled AGC Amplifier 10 to 1000 MHz

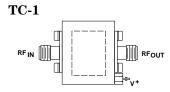
Technical Data

AGC-1053

Features

- Frequency Range: 10 to 1000 MHz
- **Gain Stages**
- AGC Range: 35 dB (Typ)
- 0 to 5 V Control Voltage


Applications


- Open or Closed Loop Gain **Control**
- **Receiver Output Gain Control**
- **Transmitter Output Leveling** Control

Description

The AGC-1053 combines three MMIC RF amplifiers with 22 dB • MODAMP Silicon Monolithic (typ) gain, and PIN diodes with 0to +5 VDC control voltage for gain control. The 1053 has blocking capacitors which couple the RF signal through the amplifier, and bypass capacitors to filter the bias voltage line.

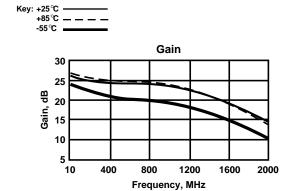
Pin Configuration **TO-8F**

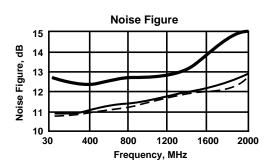
Maximum Ratings

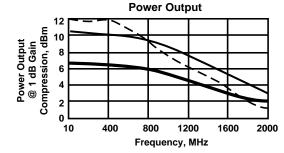
Parameter	Maximum		
DC Voltage	+17 Volts		
Continuous RF Input Power	+17 dBm		
Operating Case Temperature	−55 to +125°C		
Storage Temperature	−62 to +150°C		
"R" Series Burn-In Temperature (T_c)	+125°C		

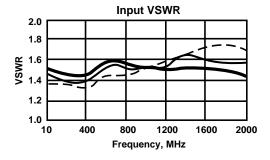
Thermal Characteristics¹

$ heta_{ m JC}$	130/130/130°C/W
Active Transistor Power Dissipation	125/125/175 mW
Junction Temperature Above Case Temperature	16/16/24°C
MTBF (MIL-HDBK-217E, A _{UF} @ 90°C)	378,652 Hrs.

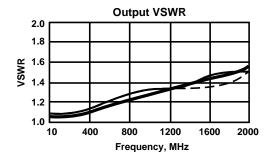

Weight: (typical) 2.1 grams

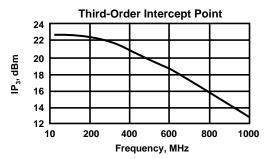

Electrical Specifications

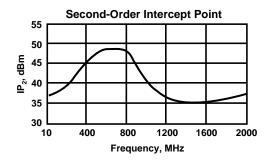

(Measured in 50 Ω system @ +15 VDC nominal unless otherwise noted)

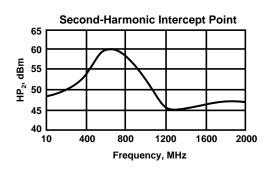

Symbol	Chavastavistis	Typical	Guaranteed	TT *4	
Symbol	Characteristic	$T_{\rm C} = 25^{\circ} C$	$T_{\rm C}$ = 0 to 50°C	$T_{\rm C}$ = -55 to +85°C	Unit
BW	Frequency Range	10-1000	10-1000	10-1000	MHz
GP	Small Signal Gain (Min.)	22	18	17	dB
_	Gain Flatness, $V_{AGC} = 0$ to +3 Volts (Max.)	±1.0	±2.0	±2.5	dB
_	AGC Range, V _{AGC} = +5 Volts	35	_	_	dB
NF	Noise Figure, V _{AGC} = 0 (Max.)	11.0	12.0	13.0	dB
P_{1dB}	Power Output @ +1 dB Compression	+8.0	+5.0	+3.0	dBm
	$V_{AGC} = 0$ (Min.)				
_	Input VSWR, V _{AGC} = 0 to +5 Volts (Max.)	1.5:1	2.0:1	2.0:1	_
_	Output VSWR, $V_{AGC} = 0$ to +5 Volts (Max.)	1.5:1	2.0:1	2.0:1	_
IP ₃	Two Tone 3rd Order Intercept Point	+20.0		_	dBm
IP_2	Two Tone 2nd Order Intercept Point	+40.0		_	dBm
HP_2	One Tone 2nd Harmonic Intercept Point	+50.0		_	dBm
_	Response Time (10 to 90%)	25		_	μs
VDC	Bias Voltage	+15		_	Volts
I_{D}	Bias Current	90		_	mA
V_{AGC}	AGC Voltage	0 to +5		_	Volts
IAGC	AGC Current	0 to 12	_	_	mA

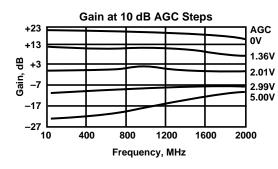
Typical Performance Over Temperature (@ +15 VDC unless otherwise noted)

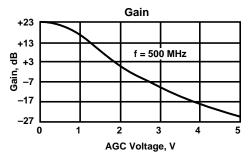


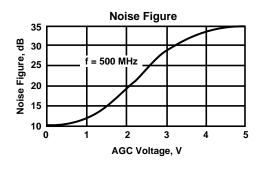


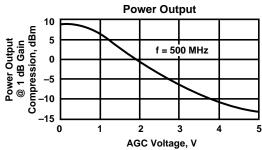


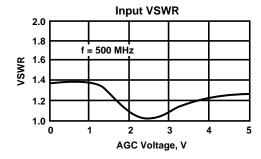


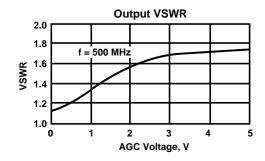

Typical Performance Over Temperature (continued)

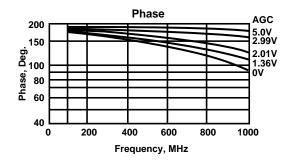


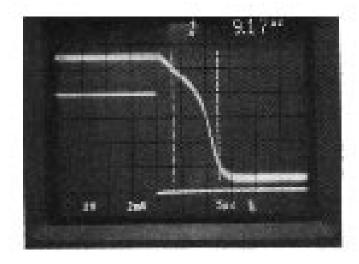


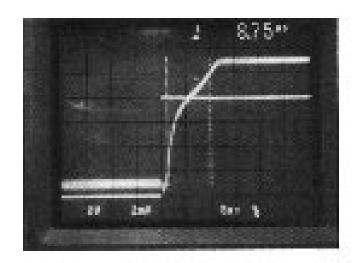




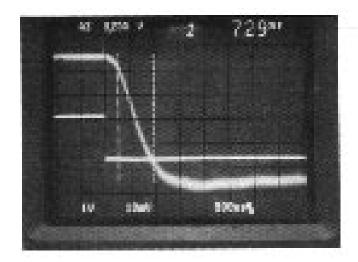



Typical Performance Over Temperature (continued)

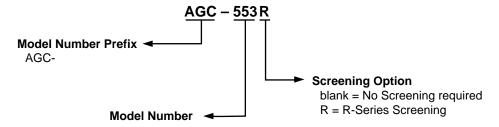


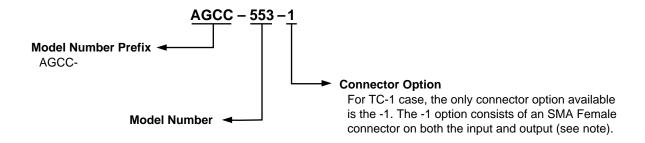


Automatic Network Analyzer Measurements (Typical production unit @ +25°C ambient)
S-Parameters
Bias = 15.00 Volts, Current = 86 mA

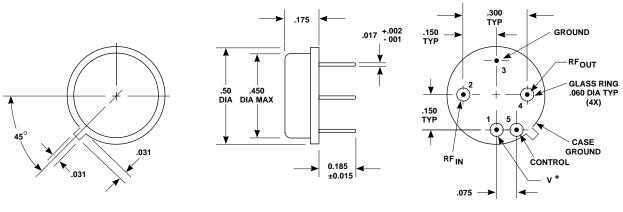

FREQUENCY	S ₁₁		\mathbf{S}_{21}		$\mathbf{S_{12}}$		$_\{\mathbf{S}_{22}}$	
MHz	Mag	Ang	dB	Ang	dB	Ang	Mag	Ang
100.00	.168	3.3	23.100	160.4	-35.047	-177.0	.010	8.2
150.00	.160	8	22.828	149.5	-37.208	-3.0	.019	-119.0
200.00	.156	-6.1	22.744	140.0	-45.836	66.7	.034	-98.4
250.00	.152	10.8	22.704	129.6	-51.764	-18.7	.032	-95.8
300.00	.151	-14.5	22.600	120.0	-48.073	-38.4	.057	-80.3
350.00	.156	-14.1	22.320	110.4	-54.909	-171.3	.064	-101.6
400.00	.158	-18.4	22.243	101.3	-45.695	40.0	.065	-97.3
450.00	.171	-22.4	22.115	92.3	-50.204	20.9	.075	-96.9
500.00	.185	-23.0	22.112	82.9	-53.132	145.6	.078	-96.6
550.00	.193	-23.5	22.092	73.7	-52.702	68.7	.090	-98.0
600.00	.195	-23.5	22.027	64.5	-52.354	98.2	.097	-99.4
650.00	.195	-23.9	21.960	55.0	-53.418	146.8	.106	-100.5
700.00	.185	-26.6	21.893	45.4	-60.145	162.5	.112	-102.5
750.00	.177	-31.5	21.784	36.3	-55.039	71.8	.121	-104.3
800.00	.174	-36.6	21.720	26.3	-47.281	51.9	.127	-106.2
850.00	.182	-41.2	21.571	15.7	-47.371	49.8	.129	-108.4
900.00	.183	-44.9	21.450	4.9	-56.316	75.2	.132	-113.0
950.00	.189	-49.0	21.291	-5.6	-50.851	112.3	.140	-115.5
1000.00	.194	-49.8	21.113	-16.5	-48.514	75.1	.141	-114.5
1050.00	.195	-47.2	20.897	-26.6	-49.027	80.0	.137	-115.7
1100.00	.192	-44.9	20.699	-36.6	-47.141	74.4	.132	-119.4
1150.00	.193	-43.9	20.454	-46.6	-47.842	81.1	.137	-118.8
1200.00	.197	-45.2	20.181	-56.5	-54.577	110.8	.136	-115.1
1250.00	.204	-47.4	19.852	-65.7	-48.801	78.9	.126	-110.9
1300.00	.218	-50.3	19.508	-75.0	-50.134	59.9	.121	-107.2
1350.00	.238	56.2	19.256	-84.3	-54.313	93.9	.139	-105.3
1400.00	.245	-59.4	19.032	-94.2	-61.674	110.8	.162	-101.8
1450.00	.240	-61.3	18.695	-104.3	-48.073	131.5	.165	-101.0
1500.00	.231	-64.2	18.389	-114.0	-52.090	123.2	.156	-104.0
1550.00	.228	-65.3	17.998	-123.8	-46.604	136.4	.163	-110.3
1600.00	.228	-65.2	17.527	-133.1	-50.210	116.1	.177	-108.5
1650.00	.228	-66.3	17.069	-142.6	-46.314	152.4	.176	-102.7
1700.00	.224	-68.5	16.509	-151.7	-45.587	138.9	.164	-103.3
1750.00	.224	-70.4	15.967	-160.6	-47.299	140.9	.169	-108.1
1800.00	.223	-72.4	15.427	-169.7	-49.243	164.2	.186	-107.9
1850.00	.225	-73.7	14.855	-179.1	-45.932	159.3	.186	-103.2
1900.00	.226	-73.8	14.335	172.5	-48.546	148.4	.173	-103.5
1950.00	.224	-74.1	13.847	164.0	-44.024	146.4	.173	-108.1
2000.00	.224	-74.5	13.294	156.2	-44.810	154.0	.188	-107.2

 $\begin{aligned} & \text{Frequency = 100 MHz} \\ & 50 \ \mu\text{s/Div.} \\ & 10 \ dB \ Gain \ Change \end{aligned}$



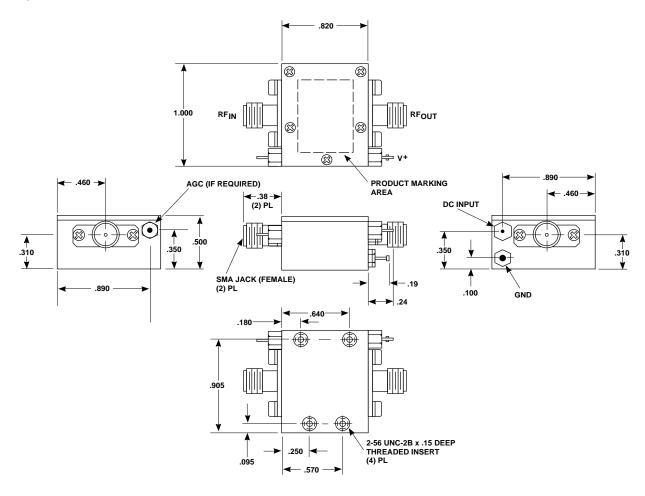

Frequency = 100 MHz 50 µs/Div. Full AGC Voltage

Frequency = 100 MHz 5 µs/Div. Full AGC Voltage


Product Options

Note: No R-Series screening is available in the TC-1 case as the case is non-hermetic.

Case Drawings TO-8F


NOTES (UNLESS OTHERWISE SPECIFIED):
1. DIMENSIONS ARE SPECIFIED IN INCHES

APPROXIMATE WEIGHT 2.1 GRAMS

2. TOLERANCES: $xx \pm .02$

 $xxx \pm .010$

Case Drawings TC-1

TYPICAL WEIGHT WITH CONNECTORS = 21.5 GRAMS

NOTES: 1. THE TC-1 CASE IS A NON-HERMETIC CASE.
2. THE ONLY CONNECTOR OPTION AVAILABLE FOR THE TC-1 CASE IS THE -1, SMA FEMALE CONNECTORS AT BOTH INPUT AND OUTPUT PORTS.

NOTES (UNLESS OTHERWISE SPECIFIED):

1. DIMENSIONS ARE SPECIFIED IN INCHES

2. TOLERANCES: $xx \pm .02$

 $xxx \pm .010$

Contact Teledyne Microwave Solutions: 650-691-9800 650-962-6845 fax

Check for updates: www.teledynemicrowave.com