## Analog Level Detectors 10 to 1000 MHz

## Technical Data

## Features

- $\mathbf{- 1 2 0} \mathbf{~ m V}$ Output for $\mathbf{- 1 0} \mathbf{~ d B m}$ Pin
- $\pm 1.0 \mathrm{~dB}$ Flatness
- 50- or 300-Ohm Impedance


## Applications

- Specifically Designed for System Built-in Test
- RF/IF Monitor
- Level Control
- UTD-1001 Can Be Used Without a Coupler in Many Cases


## Schematic



[^0]
## Description

The UTD-1000 has an input impedance of 50 ohms. The UTD-1001 has an input impedance of greater than 300 ohms. In all other respects the detectors are similar. The level detector consists of an amplifier stage that drives a Schottky-barrier detector diode. Matched back-to-back silicon diodes which are closely thermally-coupled to the detector provide a DC tracking reference.

Pin Configuration
TO-8F


## Maximum Ratings

| Parameter | Maximum |
| :--- | :--- |
| Bias Current (diode) | 1 mA |
| Continuous RF Input Power | +17.0 dBm |
| Operating Case Temperature | $-54^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature | $-62^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| "R" Series Burn-In Temperature | $+125^{\circ} \mathrm{C}$ |
| Pulse Input Power (1.0 minute max.) | 100 mW |
| Junction Temperature Above Case Temperature | $3^{\circ} \mathrm{C}$ |

Weight: (typical) 2.1 grams

## Electrical Specifications

(Measured in $50 \Omega$ system @ +15 VDC nominal)

| Symbol | Characteristic | $\begin{gathered} \text { Typical } \\ \mathbf{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Specifications |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\mathrm{C}}=0$ to $50{ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{C}}=-55$ to $+85^{\circ} \mathrm{C}$ |  |
| - | Detected Voltage (Min.) $\mathrm{f}=500 \mathrm{MHz}$, cond. ${ }^{1,2}$ | -120 | -90 | - | mV |
| - | Flatness (referred to input) (Max.) $\mathrm{f}=10-1000 \mathrm{MHz}$, cond. ${ }^{1,2}$ | $\pm 0.7$ | $\pm 1.0$ | - | dB |
| - | Variation Over Temperature (referred to input), $\mathrm{f}=500 \mathrm{MHz}$, cond. ${ }^{1,2,3}$ | $\pm 1.0$ | - | - | dB |
| - | Input VSWR, $50 \Omega$ (UTD-1000 only) (Max.) $\mathrm{f}=10-500 \mathrm{MHz}$ | 1.5:1 | 1.7:1 | - | - |
| - | Input Impedance (UTD-1001 only) <br> Equivalent resistance <br> Equivalent capacitance | $\begin{aligned} & 300 \Omega \\ & 3.3 \mathrm{pf} \end{aligned}$ | — |  | — |
| - | Input 3rd Order Intercept Point $\mathrm{f}=10-500 \mathrm{MHz}$ | +20 | - | - | dBm |
| - | Output Offset Voltage (Max.) $\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\text {REF }}=50 \mu \mathrm{~A}$, no RF drive | $\pm 10.0$ | $\pm 15.0$ | - | mV |
| - | Differential Voltage Tracking | $\pm 5.0$ | - | - | mV |
| - | Output Capacitance | 1000 | 1300 | - | pf |

Conditions: $\quad$ 1. $\mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}, \mathrm{R}=10 \mathrm{~K} \Omega$
2. $\mathrm{P}_{\text {IN }}=-10 \mathrm{dBm}$ (RF input)
3. Typical variation over $-55^{\circ}$ to $+85^{\circ} \mathrm{C}$

## Product Options



## Typical Performance @ $\mathbf{2 5}^{\circ} \mathrm{C}$



## Case Drawings

TO-8F



APPROXIMATE WEIGHT 2.1 GRAMS

NOTES (UNLESS OTHERWISE SPECIFIED): 1. DIMENSIONS ARE SPECIFIED IN INCHES 2. TOLERANCES: $x x \pm .02$ $x x x \pm .010$


[^0]:    * Requires external bias resistors see "Application Note", Section 7.

